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Abstract

I present a game theoretic model of Joint Liability Lending (JLL) microfinance
programs with endogenous peer pressure to repay. In addition, I describe a role for
institutional pressure applied by microfinance institutions (MFIs). This model helps
better explain two important empirical findings in the literature. Firstly, observed
repayment rates in not for profit microfinance programs are very high. Secondly, the
welfare implications of these programs (as evidenced by RCTs) are small. I analyze
a sequential game where the MFI’s interest rate, the projects selected by the group
members and the subsequent peer pressure and repayment decision are endogenized. I
characterize the solutions and analyze the game in numerical examples.

The most striking intuition generated by the model is that when (risk-averse) house-
holds can choose between low risk-low reward and high risk-high reward investments,
and the MFI prefers to set low interest rates, the resulting equilibrium boasts ineffi-
ciently high repayment rates. This leads to an inefficient transfer of the burden of risk
bearing onto the households who respond by inefficiently choosing low risk-low reward
investments. Thus, counter to the main purpose of these programs of poverty allevia-
tion, this implies that growth generating investments (high risk-high reward) are left
under funded in equilibrium. Thus, the model provides a more satisfactory explanation
of some of the empirical findings in this literature.
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“... top-down repayment pressure can lead to forms of borrower discipline which are unnecessarily ex-
clusionary, and which can contradict the broader (social) aims of solidarity group lending”

— Richard Montgomery

“... despite the promise of microcredit as a development tool aimed at helping borrowers escape poverty,

there was a general consensus among high-level staff that credit in and of itself was not sufficient to achieve

Fundacion Paraguaya’s mission to alleviate poverty.”

— Caroline E. Schuster

1 Introduction

In this paper, I consider the role of top down pressure in encouraging repayment and project
(investment) selection in Joint Liability Lending microfinance programs (group loan). By
top down pressure, I denote the two types of pressure to repay observed to be in action
in these programs: pressure to repay from the Microfinance Institution (MFI) institutional
pressure, and endogenous pressure by group members peer pressure. In doing so, I discuss its
implications on how the risk is distributed between the group members and the MFI. Finally,
I demonstrate the effect of excessive risk on group members on their project selection.

Joint Liability Lending (JLL) has been an exceedingly common form of loan contract of-
fered in the early days of microfinance programs world over. Even today, while many lenders
offer a large menu of contracts, JLL contracts remain a popular choice in lending to the poor-
est among the MFI’s clientele (those who do not own land, for example) or to newer clients.
The basic premise is that participating households organize into groups to receive a joint
liability loan. In such a program, the obligation of repaying the loan falls collectively on the
group and not on individual members. If the group fails to repay, the microfinance institu-
tion refuses to offer all members of the group a loan thereafter. Thus, side-payments among
group members are incentivized in the event of bankruptcy of few members of the group.
While microfinance has undergone rapid commercialization in the recent years, at its incep-
tions, popular stalwarts operated as non-profits (sometimes even under heavy subsidization
from the government). This paper focuses on microfinance institutions (MFIs) that operate
as non-profits (or NGOs) and not as profit seeking enterprises. Grameen bank, BRAC and
the early days of SKS are all examples of microfinance programs that operated as non-profits.

This paper explores the role of top-down pressure in rationalizing an empirical paradox
observed among microfinance programs. Firstly, repayment rates are predominantly high
with most instances of microfinance resulting in very high repayment rates; between 89%
and 98% 1. Secondly, while some of the empirical evidence on the effectiveness of microfi-
nance in alleviating poverty is controversial at best, evidence from randomized control trials
suggests a small, if not insignificant, average effect of these programs on a variety of welfare
indicators such as profitability of business, health and women empowerment.

1A notable counter-example is Andhra Pradesh where repayment rates plummeted to around 10 - 15%
when the program was commercialized (operated for profit).
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Within the purview of the existing models, these empirical findings suggest that relax-
ing credit constraints might not be of paramount concern for policy makers interested in
alleviating poverty. This is because the existing literature rationalizes the high repayment
rates through an efficient allocation of resources, that is, JLL addresses problems of adverse
selection and moral hazard it was designed to overcome. The lack of evidence on poverty
alleviation seems to suggest that even an efficient alleviation of credit constraints does not
help these local economies grow. This offers a rather grim outlook for prospects of poverty
alleviation by means of relaxing the credit constraints. It would suggest that relaxing the
credit constraint in these markets is inconsequential if it is not foreshadowed by investing
in building human capital and/or other forms of investment necessary for incubating and
developing profitable ventures. As one suspects, such multi-pronged interventions are not
only resource intensive but would also need to be carefully curated with the local context
in mind, rather than allowing the market to leverage its local information to do so organically.

In this paper, I present a canonical model of group lending with two group members and
a not for profit MFI. The MFI decides whether to operate or not and the interest rate it
would offer the group. Group members simultaneously choose their projects (investments)
and subsequently play the group repayment group. In this group repayment game, for any
realization of project outcomes, members simultaneously decide whether or not to pressure
to each and whether or not to repay thereafter. Thus, the model allows group members to
apply (costly) peer pressure to facilitate good repayment behavior. Here, good repayment is
simply a social norm that specifies how much each member of a group repays in different
states of the world while peer pressure denotes the threat of severing social ties across which
households share resources in a mutually beneficial way. The model also details the strategic
choices of the MFI. I argue that MFIs invest in building relationships with their clients. This
relationship allows them some control over the repayment decisions of the members. In the
model, I suggest that this institutional pressure allows the market to select the equilibrium
with the highest repayment in the event of multiple equilibria. Finally, I describe and solve
the social planner’s problem in this environment, allowing welfare analysis.

A striking result generated by the model is that the group repayment game contains
equilibrium with inefficiently high repayment rates supported by very high pressure. Conse-
quently, well-meaning MFI that steer the market towards these equilibria in an attempt to
keep interest rates low (and hence loans accessible), end up inefficiently transferring the bur-
den of risk bearing onto group members. Risk averse members now respond by inefficiently
choosing low risk-low reward investments. This is detrimental to the economy since it implies
that growth generating investments (high risk-high reward) are left under funded in equi-
librium. Thus, this model provides an alternate explanation of the empirical findings that
suggests that the very feature of group lending programs (high repayment) often heralded as
a celebration of the success of these programs might also be deterring its participants from
achieving the desired outcome.
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2 Literature review

The literature on the theory of group lending in microfinance programs has established how
social collateral might replace financial capital. Stiglitz (1990) suggests a mechanism through
which peer monitoring could alleviate problems of moral hazard. In the setup therein, par-
ticipants are allowed to choose between a safe and a risky project (investment). The paper
suggests that while agents might prefer the risky project, the peer monitoring inherent in
group lending allows banks to ensure that agents avoid the risky project. While this result
seems qualitatively very similar to the result in this paper, it is worth noting that the risky
project in Stiglitz (1990) has lower expected returns than the safe project. To the contrary,
in this paper, the risky project will have a higher mean and variance compared to the safe
project. Varian (1990) explores various aspects of popular microfinance programs and their
impacts on alleviating moral hazard using the theory of mechanism design. Arnott, Stiglitz
(1991) demonstrates how non-market insurance is beneficial when insurers can perfectly
observe each other’s effort. Thus, it suggests how peer monitoring, where peers are well
informed about each other’s project outcomes might help mitigate moral hazard. Ghatak
(1999) demonstrates how group lending may leverage information on peers among partic-
ipants through self-selection of groups to overcome problems of moral hazard. van Tassel
(1999), Armendariz de Aghion, Gollier (1998), and Laffont, N’Guessan (1999) show quali-
tatively similar results in more more varied contexts. Ghatak, Guinnane (1999) explore the
impact of screening, monitoring, state verification as well as preventing strategic defaults.
Madajewicz (2011) talks about the coexistence of joint as well as individual liability lending
contracts as a welfare-maximizing solution to the lending problem. Ahlin (2015) explores
the role of group size in mitigating adverse selection. He finds that a larger group can be
beneficial so long as the households have some information about their peers. More recently,
the literature has turned its attention to the consequences of commercialization in this en-
vironment (see De Quidt, Ghatak (2018) and De Quidt, Fetzer, Ghatak (2018) for examples).

Much of the literature models group lending programs as contracts, much like traditional
individual loans. The key distinction between the two contacts is that the group lending
contract includes an additional joint liability payment for every peer whose investment has
failed. Thus, the amount to be repaid in the event of non-bankruptcy is not fixed, and
depends on the investment outcomes of peers in the group. However, any paper that seeks
to understand the effect of pressure on said strategic repayment decisions must allow repay-
ment decisions of peers to impact the payoff to a given household. Consequently, in this
model, I formulate a repayment game where households, having observed outcomes of each
other’s projects simultaneously decide whether or not to apply pressure. Subsequently, they
chose whether or not to repay. Besley, Coate (1995) is the closest in this regard. They set
up a repayment game to endogenize strategic repayment decisions. However, while Besley,
Coate (1995) consider the impact of exogenous peer punishment (termed “social collateral”)
on repayment decisions, this paper is interested in endogenizing this informal mechanism.
Further, this paper also explores the effect of this pressure on choice of projects that house-
holds invest in.

Over the years, a large empirical literature has emerged exploring different facets of
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microfinance. Ahlin, Townsend (2007) conduct experiments on credit contracts offered in
Thailand. They find no evidence to suggest group lending is more prevalent as correlation
between projects increases. They do find evidence suggesting the prevalence of group lending
is U-shaped in wealth level and increasing in dispersion of wealth as well as the assortative
matching described by Ghatak (1999). Karlan (2007) finds evidence for the role of social
ties among group members in reducing delinquencies using an RCT in Peru. Al-Azzam, Hill,
Sarangi (2011) establish a similar finding in Jordan, they find that relegious ties are par-
ticularly relevant. Ahlin, Suandi (2019) show that while the overall share of group lending
among microfinance programs has been declining, they are used more extensively in poorer
communities. Banejree, Duflo, Glennerster, Kinnan (2015) estimate the intent-to-treat ef-
fect of JLL microfinance in India using an RCT. They find that while business profitability
increased, there was no impact of consumptions, health, education and women’s empow-
erment (all though to be good indicators of poverty alleviation). Creṕon, Devoto, Duflo,
Parienté (2015), Angelucci, Karlan, Zinman (2015), Attanasio, Augsburg, De Haas, Fitzsi-
mons, Harmgart (2015), Augsburg, De Haas, Harmgart, Meghir (2015) and Tarozzi, Desai,
Johnson (2015) all suggest an small (if not insignificant) impact of microfinance programs
on its principal goal of poverty alleviation. There is also a large and highly contentious liter-
ature which evaluates the effectiveness of microfinance in non-RCT settings. Pitt, Khandker
(1998) examine data from 1800 households in over 80 villages in Bangladesh. Using the eligi-
bility criterion of the Grameen Bank, they estimate statistically and economically significant
effects of access to group loans on consumptions as well as poverty alleviation. While very
influential, this paper was met with some heavy criticism in Roodman, Morduch (2013),
which failed to replicate the findings in Pitt, Khandker (1998) is a similar model on the
same data. This then led to an exchange of ideas between the authors in a series of papers.

3 Repayment game

3.1 Setup

In this section, I lay out our model for repayment decisions within the group. I consider a
canonical group with two homogenous households A and B. These households are endowed
with some fixed income of w per period. Households within the group are offered a loan of
$1 each at interest rate r (implying the group as a whole must repay 2r). Each households
invests its loan in a project which is modeled as a lottery. Specifically, the returns to the
project is assumed to have the following probability law:

return =

{
R, with probability µ

0, with probability 1− µ

where µ ∈ (0.5, 1) and R > 1. I make two assumptions here for tractability. Firstly, the
project available to households is common knowledge. Secondly, the project outcomes are
independent across households. Later, this assumption is relaxed. In this paper, I denote by
λ = (λA, λB) ∈ {0, 1}2 the project outcome, where λi = 1 if the outcome is R (project has
succeeded) and λi = 0 if the outcome is 0 (project has failed).
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Upon realizing project outcomes, households decide whether or not the pressure each
other into following good repayment behavior. Subsequently, households choose whether or
not to follow good repayment behavior having observed whether or not their peer applies
pressure. Here, good repayment behavior is simply a norm x̃(.) : {0, 1}2 → [0, 1]2 that
prescribes ‘ideal’ payment by each household in every state of the world (project outcome).
I assume the following specification:

x̃i(λ) =

{
θ, if λi = 0

1 + (1− λj) · (1− θ), if λi = 1

where θ ∈ (0, 0.5] is the share of loan a household whose investment has failed is expected to
repay and j = {A,B} \ {i}. The above norm suggests that in the event that the projects of
both households succeed, both households simply pay their dues (r each). In the event that
one household succeeds while the other fails, the norm suggests that the failed household
pays only a fraction θ of its dues. The remainder 1 − θ fraction is made up from contribu-
tions of the successful peer in addition to the r it owes Finally, when both fail, even when all
participants follow the norm, full repayment does not result. I will demonstrate that in such
circumstances it is optimal for participants not to pressure each other and hence not make
the repayment. The key advantage of using a norm to specify good repayment behavior is
that repayment decisions are now binary: either pay the norm suggested amount or deviate
and pay nothing. While this assumption does not simplify the game enough to generate
uniqueness of equilibria, it makes the set of equilibria more tractable. Denote these binary
repayment decisions by dj ∈ {0, 1} where j ∈ {A,B}. In keeping with the on-field practice
among microfinance programs, the successful repayment of the group loan ensures that the
participants have continued access to this particular source of credit. In my model, φ(r)
denotes a net-present value of having continued access to this source of credit (continuation
value). I will elaborate on this once the full model has been established. Given that each
household’s repayment decision has a direct impact on the other’s payoff, an innovation in
this paper allows households to endogenously engage in peer pressure and monitoring. Here,
peer pressure and monitoring are though to capture various social penalties that maybe
levied by households onto their peers. One commonly documented example of this is making
threats of punishment to discourage peers from reneging on repayments. In communities
where such programs are often set-up, there exists a vibrant social culture of exchanging
goods such as grains and commodities, or even farm equipment such as ploughs and shovels.
Since groups in joint liability lending are usually self-selected, it is likely that the members
of the group also engage in such mutually beneficial exchanges. In such an environment, the
application of pressure corresponds to a household threatening its peer (with commitment)
to stop sharing resources in the event that the peer does not repay its due (as suggested by
the norm). This pressure decision is assumed to be binary and is denoted by δj ∈ {0, 1} for
all j ∈ {A,B}, where δj = 1 corresponds to j applying pressure on {A,B} \ {j} and δj = 0
otherwise.

In summary, the model presented here begins with a group containing two households
{A,B}. Upon receiving a loan of $1 each, at gross interest rate r, both households invest in
their projects. Having observed the outcome (λ) of the investment, both households simul-

6



taneously decide whether or not to apply pressure on each other (δ). I refer to this as stage 1
of the repayment game. Finally, upon observing each other’s pressure decisions, households
simultaneously make repayment decisions (d). I refer to this as stage 2 of the repayment
game. With the notation established, I now discuss strategies and payoffs associated with
the repayment game.

Definition 1 A repayment play for a given realization of investment outcomes, λ ∈ {0, 1}2,
is a (pure) strategy profile listing the repayment decision of each household in each sub-game
that may result after stage 1 (pressure). This will be denoted by dλ(.) : {0, 1}2 → {0, 1}2,
the superscript is ignored when convenient to enhance readability.

Definition 2 A (pure) strategy profile of the repayment game lists for each realization of
investment outcomes, λ ∈ {0, 1}2, a profile of pressure decisions, δ = (δλA, δ

λ
B) ∈ {0, 1}2, and

a consequent repayment play that determines repayment decisions in every sub-game that
may result after the pressure stage, dλ(.) : {0, 1}2 → {0, 1}2. σ denotes a strategy profile(
δλA, δ

λ
B, d

λ(.) : ∀λ
)
.

The payoff to household i associated with strategy profile σ =
(
δλA, δ

λ
B, d

λ(.) : ∀λ
)

is:

Ui
(
δλA, δ

λ
B, d

λ(.) : ∀λ
)

=
∑
λ

P(λ)× Ui
(
δλA, δ

λ
B, d

λ(δλA, δ
λ
B);λ

)
where the state relevant payoff function is:

Ui
(
δλA, δ

λ
B, d

λ(δλA, δ
λ
B);λ

)
= u

(
w +Rλi − rdλi (δλA, δλB)x̃i(λ)

)
+ φ(r)1

{ ∑
j∈{A,B}

dλj (δ
λ
A, δ

λ
B)x̃j(λ) = M

}
− γmax

{
δλA
(
1− dλB(δλA, δ

λ
B)
)
, δλB
(
1− dλA(δλA, δ

λ
B)
)}

− ηδλi

The first term is simply the Bernoulli felicity function which depends on the initial wealth,
investment outcome and repayment amount for the state. In this paper, I assume households
are risk averse. Consequently, this felicity function is assumed to belong to the CARA family
with risk aversion parameter α. As suggested earlier, the second term, φ(r) > 0, corresponds
to the net present value of having continued access to this source of credit in the event of
full repayment of the group loan. The third term is the contingent cost of engaging in peer
pressure, γ is the disutility associated with the severing of the relationship involving mutually
beneficial exchanges between the households. This cost is only inflicted in the event that one
households applies pressure while the other does not respond to this pressure by repaying
its share as suggested by the norm. Finally, the last term η captures the cost of monitoring
peers or the padlock cost of applying pressure (eg. cost of buying a padlock or the emotional
cost of issuing a stern warning to a friend). It is assumed that γ > η > 0.
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3.2 Equilibrium

Definition 3 Sub-game perfect equilibrium in the repayment game. A strategy profile,{
δλA, δ

λ
B, d

λ(.) : ∀λ ∈ {0, 1}2
}

is a sub-game perfect equilibrium if the following conditions
hold:

1. ∀λ, i ∈ {A,B}, given δ ∈ {0, 1}2:

Ui
(
δλA, δ

λ
B, d

λ(δλA, δ
λ
B);λ

)
≥ Ui

(
δλA, δ

λ
B, d

λ′(δλA, δ
λ
B);λ

)
for any alternate repayment play: dλ′ : {0, 1}2 → {0, 1}2

2. ∀λ, i ∈ {A,B}, given dλ(.):

Ui
(
δλA, δ

λ
B, d

λ(δλA, δ
λ
B);λ

)
≥ Ui

(
δλ′A , δ

λ′
B , d

λ(δλ′A , δ
λ′
B );λ

)
Notice that the above restrictions need to hold for each realization of λ. In fact, ow-

ing to the simple and symmetric nature of the uncertainty in this context, a strategy{
δλA, δ

λ
B, d

λ(.) : ∀λ ∈ {0, 1}2
}

is a sub-game perfect equilibrium if and only if, for every
realization of λ, the strategy

{
δλA, δ

λ
B, d

λ(.) :
}

is sub-game perfect in the sub-game beginning
at realization of investment outcomes λ. This simplifies the analysis of equilibria in this
game. Based on the structure set up, I now discuss an intuitive result that arises in any
sub-game perfect equilibrium.

Proposition 1 No pressure wasted. Suppose there is a sub-game perfect equilibrium
σ =

{
δλA, δ

λ
B, d

λ(.) : ∀λ ∈ {0, 1}2
}

where for some λ, δλ 6= (0, 0), then it must be that
dλA(δλ)x̃A(λ) + dλB(δλ)x̃B(λ) = 2 i.e. full repayment occurs.

The above proposition basically states that if any household applies pressure in an equi-
librium, then full repayment results in than equilibrium. This arises from the strictly positive
cost of applying pressure, η > 0.
Remark: This proof employs the one shot deviation principle: a popular result that states
that a strategy profile for finite extensive form game is a sub-game perfect equilibrium iff
there exists no profitable deviation for every sub-game and for every player.

As is characteristic in extensive form games with strategic complementarity, there are
a large number of sub-game perfect equilibria. In an attempt to make the analysis more
tractable, I now make reasonable restrictions on the strategy space.

Assumption 1 Monotone repayment response to peer pressure. In any sub-game perfect
equilibrium σ =

{
δλA, δ

λ
B, d

λ(.) : ∀λ ∈ {0, 1}2
}

, ∀λ 6= (0, 0), if δλ > δλ′ (greater in the vector
sense) in any sub-game perfect equilibrium, then dλ(δ) ≥ dλ(δλ′) in that equilibrium.
Additionally, when λ 6= (0, 0), the only equilibrium play is {δλA = δλB = 0; dλ(δ) = (0, 0), ∀δ}.

Essentially, the first part rules out repayment play where when additional household
applies pressure, at least one household that would have otherwise repaid doesn’t. The ap-
pendix contains an illustration of the type of behavior this assumption rules out. The second
part of the assumption basically states that in the event that the investments of both partic-
ipants fail, the unique equilibrium play that would result is that neither households applies
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any pressure and neither pays its share of the norm. This assumption is essentially without
loss of generality. First of all, note that when λ = (0, 0), {δλA = δλB = 0; dλ(δ) = (0, 0), ∀δ}
is trivially a best response since even full compliance with the norm doesn’t lead to full
repayment, thus from the contrapositive of the above lemma, neither participant has any
incentive to apply pressure. Further note that in every equilibrium in the sub-game starting
at this state, there will be no repayment and no pressure on the equilibrium path. This is
formalized in the following proposition.

Proposition 2 When λ = (0, 0) one can assume {δλA = δλB = 0; dλ(δ) = (0, 0), ∀δ} is the
only sub-game perfect equilibrium without any loss of generality.

Definition 4 Admissible Equilibrium. I denote any sub-game perfect equilibrium that satisfy
the above assumption as an admissible equilibrium.

3.3 Characterizing the set of Admissible Equilibria

There are 4 states (investment outcome realizations) in this model: both households suc-
ceed, both fail, A succeeds while B fails and vice versa. Further, in each state that there are
256 distinct repayment plays that agents may choose. The following proposition recognizes
that only a small subset of repayment plays are in fact sub-game perfect. In the two person
context, out of the 256 candidate repayment plays, only 36 can be sustained.

Proposition 3 Game implied restrictions. Given the game described above, for all contin-
uation profiles supported in any sub-game perfect equilibrium in sub-games with λ 6= (0, 0):

1. dλ(0, 0) ∈ {(0, 0), (1, 1)}
2. dλ(1, 0) 6= (1, 0) likewise dλ(0, 1) 6= (0, 1)
3. dλ(1, 1) ∈ {(0, 0), (1, 1)}

Intuition The first assertion in this proposition states that in any optimal repayment play,
partial repayment cannot occur when neither household applies any pressure, i.e. either both
households or neither repay. This is a direct consequence of the strategic complementarity in
repayments. Notice that in the event of partial repayment, neither household will be allowed
to borrow from the microfinance institution thereafter. Thus, the household that is paying is
only loosing money (be repaying now) and now getting any additional utility from continued
access to this source of credit. So, in the event that this household is not under pressure
to comply with the repayment norm, it must simply choose not to repay. The remaining
assertions are more subtle. Collectively, they suggests that the act of applying pressure will
not induce the household applying pressure to repay without also inducing the other house-
hold to repay. This is because the household applying pressure faces the same (if not lower)
incentives to repay its share when it chooses to apply pressure. As a consequence of the
non-repayment of the other household, the social penalty as well as the MFIs punishment
(no access to future loans) are levied on the group regardless.

The following proposition discusses a similar result to the one above. It considers repay-
ment plays that may be supported in an admissible equilibrium, i.e. satisfy assumption 1 in
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addition to conditions required for sub-game perfection.

Proposition 4 Under assumption 1, for all λ 6= (0, 0), the number of optimal repayment
plays reduces from 36 to 11.

This can be verified by running through all the 36 options and checking if they satisfy
assumption 1. In the appendix, I list the 11 consistent repayment plays supported in an
admissible equilibrium. For sub-games with λ 6= (0, 0), any of the 11 possible repayment
plays listed above could be chosen. In the sub-game with λ = (0, 0), assumption 1 provides
the only admissible strategy. Consequently, there are a large number of possible admissible
equilibria.

In what follows, I illustrate the actions observed on equilibrium path (for a given state,
λ) based on parameter values. In the graphs that follow, the x-axis represents difference
in the Bernoulli felicity from household A repaying the norm suggested amount, XA =
u
(
w+RλA− rx̃A(λ)

)
−u
(
w+RλA

)
. Likewise, the y-axis represents the same for household

B, XB = u
(
w +RλB − rx̃B(λ)

)
− u
(
w +RλB

)
.
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Figure 1: φ(r) + γ > φ(r) + γ − η > φ(r) > φ(r)− η > γ

x

y

γ φ(r)− η φ(r) φ(r) + γ − η φ(r) + γ

γ

φ(r)− η

φ(r)

φ(r) + γ − η

φ(r) + γ

no eqbm.

no repayment

I

II

III

IV

V

VI

VII

VIII

I = no repayment or repayment with one hh applying pressure; II = no repayment or repayment with both hh applying
pressure; III = no repayment or repayment with no pressure or both hh applying pressure; IV = repayment with one or both

hh applying pressure; V = no repayment or repayment with one or both hh applying pressure; VI = no repayment or
repayment with no pressure or one hh applying pressure; VII = repayment with no pressure or one hh applying pressure; VIII

= no repayment or repayment with no pressure or one or both hh applying pressure.

Figure 2: φ(r) + γ > φ(r) + γ − η > φ(r) > γ > φ(r)− η

x

y

φ(r)− η γ φ(r) φ(r) + γ − η φ(r) + γ

φ(r)− η

γ

φ(r)

φ(r) + γ − η

φ(r) + γ

no eqbm.

no repayment

I

II

III

IV

V

VI

VII

VIII

I = no repayment or repayment with one hh applying pressure; II = no repayment or repayment with both hh applying
pressure; III = no repayment or repayment with no pressure or both hh applying pressure; IV = repayment with one or both
hh applying pressure; V = no repayment or repayment with no pressure; VI = no repayment or repayment with no pressure or
one hh applying pressure; VII = repayment with no pressure or one hh applying pressure; VIII = repayment with no pressure

or one hh applying pressure.
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Figure 3: φ(r) + γ > φ(r) + γ − η > γ > φ(r) > φ(r)− η
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y

φ(r)− η φ(r) γ φ(r) + γ − η φ(r) + γ

φ(r)− η
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φ(r) + γ − η

φ(r) + γ
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IV

V

VI

VII

VIII

I = no repayment or repayment with one hh applying pressure; II = no repayment or repayment with both hh applying
pressure; III = repayment with both hh applying pressure; IV = repayment with one or both hh applying pressure; V = no

repayment or repayment with no pressure; VI = repayment with one hh applying pressure; VII = repayment with no pressure
or one hh applying pressure; VIII = repayment with no pressure or one hh applying pressure.

Figure 4: φ(r) + γ > γ > φ(r) + γ − η > φ(r) > φ(r)− η

x

y

φ(r)− η φ(r) φ(r) + γ − η γ φ(r) + γ

φ(r)− η

φ(r)

φ(r) + γ − η

γ

φ(r) + γ

no eqbm.

no repayment

I

II

III

IV

V

I = no repayment or repayment with one hh applying pressure; II = repayment with one hh applying pressure; III = not
feasible since Xi > 0; IV = repayment with no pressure or one hh applying pressure; V = no repayment or repayment with no

pressure.

As illustrated above, for any sub-game originating at a given state of the world, λ, ex-
istence of admissible equilibrium is not guaranteed. It can be verified using the conditions
enlisted in the appendix that the following assumption guarantees existence of admissible
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equilibria.

Assumption 2 Condition to guarantee existence of admissible equilibrium. For any i ∈
{A,B} and j ∈ {A,B} \ {i}, both

max{φ(r) + γ, γ} < u
(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
and

γ > u
(
w +Rλj

)
− u
(
w +Rλj − rx̃j(λ)

)
are not simultaneously true in any λ.

4 Full game

4.1 Setup

I now enrich the repayment game with important features commonly observed in group
lending programs. In this paper, I incorporate the following features:

1. Households can choose between high risk high reward (risky) and low risk low reward
(safe) projects.

2. Endogenize the interest rate that the MFI sets.
3. MFIs invest resources in building relationships with clients. Further, MFIs often lever-

age this relationship to discourage strategic defaults (institutional pressure).

The full game I prescribe begins by the not for profit MFI first choosing whether or not
to make its loan available. Denote this decision by O ∈ {0, 1}, where the MFI choosing to
operate (make its loan available) is assigned O = 1. If operating, the MFI can raise capital
at rate c and must chose the interest rate r at which the loan is offered. Having observed the
interest rate set by the MFI, both households in the group simultaneously choose between
the safe and risky projects. Denote these choices by Li ∈ {Lrisky, Lsafe} for i ∈ {A,B}.
Based on the interest rate r, projects chosen LA, LB, the repayment game (described above)
is played.

Here, it is convenient to elaborate on the two types of lotteries. The stochastic returns
are governed by probability laws:

return in Lsafe =

{
Ri, with probability µ
Ri

2
, with probability 1− µ

return in Lrisky =

{
2Ri, with probability µ

0, with probability 1− µ

A crucial feature of these projects is that Lrisky has a higher excepted return and higher
variance than Lsafe. This is in contrast to the setup in Stiglitz (1990) where the risky
project has both lower mean and higher variance. Since participants now choose between
projects, the state space (of investment outcomes) has expanded, i.e. λ ∈ {0, 0.5, 1, 2}2.
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Defined below is the new social repayment norm that accounts for the different levels of
outcomes that may be realized.

x̃i(λ) =


θ, if if λi = λj = 0
θ
λj
, if λi = 0, λj 6= 0

1 + (1− θ
λi

), if λi 6= 0, λj = 0

1, if λi 6= 0, λj 6= 0

where j = {A,B} \ {i}. In this specification, the norm takes into account the outcome of
the successful investment realization and proposes larger co-payment amounts in states with
higher outcomes.

Definition 5 A (pure) strategy profile of the full game

Σ =
(
O, r,

(
LA(r), LB(r), σ(r, LA, LB)∀LA,LB

)
∀r

)
lists the decision to enter, the interest rate

chosen by the MFI, the projects chosen and the strategy of pressure and repayments by group
members at each interest rate that may be set by the MFI, i.e. for all LA, LB ∈ {Lsafe, Lrisky},

σ(r, LA, LB) =

{
δλA(r, LA, LB), δλB(r, LA, LB), dλ(r, LA, LB) : ∀λ ∈ {0, 0.5, 1, 2}2

}
.

Definition 6 The endogenous investment distribution for any strategy profile

Σ =
(
O, r,

(
LA(r), LB(r), σ(r, LA, LB)∀LA,LB

)
∀r

)
is defined as P(λ|Σ) = P(λ|LA(r), LB(r)).

This is detailed in the table below:

Table 1: P(λ|LA, LB)
λ P(λ|Lsafe, Lsafe) λ P(λ|Lsafe, Lrisky) λ P(λ|Lrisky, Lrisky)
(0.5,0.5) (1− µ)2 (0.5,0) (1− µ)2 (0,0) (1− µ)2

(0.5,1) µ(1− µ) (0.5,2) µ(1− µ) (0,2) µ(1− µ)
(1,0.5) µ(1− µ) (1,0) µ(1− µ) (2,0) µ(1− µ)
(1,1) µ2 (1,2) µ2 (2,2) µ2

Definition 7 π(Σ) denotes the default rate associated with any strategy profile Σ. i.e.
π(Σ) =

∑
λ P(λ|Σ)1

{
dλA(Σ)x̃A(λ) + dλB(Σ)x̃B(λ) < 2

}
.

Assumption 3 Allowed interest rates. Restrict interest rates that the MFI may set (i.e.
restriction on the action space) to:

r ∈
{
c

µ2
,

c

µ2 + µ(1− µ)
,

c

µ2 + 2µ(1− µ)
, c

}
These rates correspond to those values at which the MFI breaks even (earns zero profit on
expectation) when repayment occurs:
• if both households succeed (i.e. λi ≥ 1, λj ≥ 1),
• if both households succeed or A succeeds while B fails but not vice versa,
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• if at least one household succeeds,
• always

respectively. This assumption will be without loss in generality (in equilibrium) when paired
with the following assumption.

Assumption 4 A strategy profile satisfies monotone repayment maximality if the following
properties hold:

1. ∀r, if full repayment occurs in state λ, then full repayment also occurs in all λ′ ≥ λ
where every group member’s investment outcome is at least as successful;

2. ∀λ, if full repayment occurs at interest rate r, then full repayment also occurs at any
lower interest rate r′ < r.

The payoffs to the households remain unchanged and require a notational update to
account for the choice of investment projects. For any i ∈ {A,B},

Ui

(
Σ
)

= O ×
∑
λ

P(λ|Σ)× Ui
(
σ(r, LA, LB);λ

)
+ (1−O)× u(w)

The payoff to the MFI associated with strategy Σ is represented as:

UMFI(Σ) = 1

{
rΣ · π

(
Σ
)
≥ c

}
·O + 0.1(1−O)

where rΣ is the interest rate suggested in the strategy profile, Σ. The intuition is that if
the MFI is able to recover the cost of providing loans (in expectation), it gets a utility of 1.
To the contrary, if it unable to do so, the utility of the MFI has been normalized to 0. If
the MFI chooses not to operate it receives 0.1 utils, this implies that the MFI would rather
choose not to operate if it cannot recover costs.

4.2 Continuation value

The notion of the continuation value defined earlier as the net-present value of having con-
tinued access to this source of credit needs to be updated to reflect the choice of projects.
In the full game, this is denoted as φ(r, LA, LB) to indicate that this value is sensitive to
the choice of interest rate as well as the projects, but not the choices in the repayment
game. Consequently, this allows households to value loans offered at a higher interest rates
less than those offered at a lower interest rate. This will in turn affect their repayment
decisions. Furthermore, this representation allows households to internalize how members of
their group use their loans and the net-present value is suitable adjusted. This also affects
repayment decisions. Ideally, the repayment decisions would also be internalized to yield an
analogue of the stationary equilibrium of repeated games. Instead, this is restricted in favor
of tractability. I make this specific assumption with regard to repayment decisions being
factored into the continuation value:

Assumption 5 For the purposes of computing the continuation value, at any interest rate
r and project (investment) choice LA, LB, full repayment is assumed to occur whenever fea-
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sible, i.e. full repayment occurs in all state λ such that x̃A(λ) + x̃B(λ) = 2.

Thus, given the repayment norm detailed above, repayment is assumed to occur in all
states expect λ = (0, 0). Please refer to the appendix for details on how φ(·, ·, ·) is set.

4.3 Equilibrium

Definition 8 Monotone repayment equilibrium in the full game.

A strategy profile Σ =
(
O, r,

(
LA(r), LB(r), σ(r, LA, LB)∀LA,LB

)
∀r

)
is an admissible equilib-

rium if the following conditions hold:
1. ∀r, LA, LB, σ(r, LA, LB) is itself an admissible equilibrium in the repayment game,
2. ∀r, LA(r) and LB(r) are simultaneous best responses given the strategy in the group

repayment game, σ(r, ·, ·),
3. O, r chosen to satisfy

O =

{
1, if r · π

(
Σ
)
≥ c

0, otherwise

Existence of monotone repayment equilibria in the full game is closely tied with the exis-
tence of admissible equilibria in the repayment game. It is required that for each r, LA, LB,
there exists an admissible equilibrium in the repayment game. Thus, ∀r, ∀λ ∈ {0, 1/2, 1, 2}2,
the conditions in assumption 2 are not simultaneously satisfied. Further, at any interest rate
r, a simultaneous best response in choice of projects (investments) must exist. Here, we can
exploit the symmetry of the game to ensure existence. Note, that in the sub-game where
households chose projects, the payoffs may be summarized as follows for symmetric profiles:
where x, y, z, w correspond to payoffs associated with σ(r, Lsafe, Lsafe), σ(r, Lsafe, Lrisky) and

Table 2: Normal form representation of project selection stage game

HH 1

HH 2
Safe Risky

Safe x, x w, z
Risky z, w y, y

σ(r, Lrisky, Lrisky) repayment strategy profiles. It is well know that pure strategy equilibrium
always exist in such games.

4.4 Selection Mechanism

I now turn my attention to the role of institutional pressure. As noted earlier, it is well
documented that MFIs invest resources in building relationships with their clients and of-
ten leverage this relation to discourage strategic defaults among groups (see Haldar, Stiglitz
(2016)). Further, early iterations of microfinance programs (the focus of this paper) pre-
ferred keeping interest rates low to ensure accessibility. Consider the following quote from
then acting Managing Director of the Grameen MFI, Ratan Kumar Nag “We are now charg-
ing the highest 20.0 per cent interest against a loan though the ceiling of interest is 27.0 per

16



cent fixed by the Microcredit Regulatory Authority (MRA).” He also suggested that the loan
recovery rate was 99.05% in 2016. In the model, this will be incorporated by means of a
selection mechanism.

Assumption 5 In the event of multiplicity of equilibria, the application fo institutional pres-
sure ensures that the market selects the equilibrium with the high pressure and repayment
(in each relevant sub-game). Call these maximal monotone repayment equilibrium.

It is useful to point out that maximal equilibrium is not unique. For example, a given
repayment profile might be sustained by pressure by either household individually. However,
it does ensure enough tractability to conduct welfare analysis.

By way of anecdotal evidence, consider the case of Andhra Pradesh, India. Initially, the
market was largely controlled by SKS, which was built in the image of the early iteration
of the Grameen bank. By late 2000s, the industry saw an influx of large number of MFIs
followed by rapid commercialization. As Ballem et al from Microsave (then a competitor to
SKS) recount: “Most MFIs are mono-service credit companies providing standard basic joint
liability group (JLG) loans to customers. There has been only a limited focus on clients; be
it in terms of assessing their capacity to repay or in developing appropriate products to suit
their needs. Microsave has often observed that despite the MFI management’s protestation to
the contrary, most clients see MFIs as just another source of credit, rather than institutions
interested in client welfare. The rapid influx of capital resulted in rapid expansion in scale
without adequate investment in building customer relationships.” This rapid commercial-
ization was immediately followed by a collapse of the industry to the point of government
intervention. Repayment rates plummeted to 10 - 15% while interest rates soared (as sug-
gested by Ballem and colleagues). This is suggestive of the role of the relationship between
MFIs and its clients in ensuring high repayment and consequently low interest rates.

5 Welfare Analysis

The objective of this paper is to study the inefficiencies arising from top-down pressure
(institutional pressure as well as peer pressure) in group lending programs. To that end, I now
describe the problem faced by a utilitarian planner in this environment. The planner seeks
to maximize the expected household welfare subject to meeting the zero-profit condition of
the MFI. Define h(·) : {0, 1/2, 1, 2}2 → {0, 1} as the (full) repayment decision of the planner
in each state of the world2. Consequently, the planner’s problem maybe expressed as follows:

max
O,r,h(.),LA,LB

(
1−O)2u(w) +

O
[
EUA,λ|LA,LB

(r, h(.)) + EUB,λ|LA,LB
(r, h(.))

]
· 1
{
r · Eλ|LA,LB

[
h(λ) · 1{x̃A(λ) + x̃B(λ) = 2}

]
≥ c

}
2 Not only would the planner never need to apply pressure to induce repayment, but also, applying

pressure is costly (η > 0). Hence, we suppress this decision and stipulate that the planner never applies
pressure.
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where

EUi,λ|LA,LB
(r, h(.)) =

∑
λ

P(λ;LA, LB)
[
h(λ) · Ui(δλ = (0, 0), dλ = (1, 1);λ)

+ (1− h(λ)) · Ui(δλ = (0, 0), dλ = (0, 0);λ)
]

where the actions of the planner are such that interest rate r ∈
{

c
µ2
, c
µ2+µ(1−µ)

, c
µ2+2µ(1−µ)

, c

}
,

the choice of lotteries LA, LB ∈ {L1, L2} and repayment decisions h : {0, 1/2, 1, 2}2 → {0, 1}
such that when P(λ;LA, LB = 0) then h(λ) = 0. Owing to the finiteness of the problem, a
solution exists.

6 Discussion

I now discuss some of the intuition generated by the model. Since characterizing the set of
equilibrium in such game in terms of the parameters is unyielding, I present numerical com-
putations of the maximal monotone repayment equilibrium as well as the planner’s problem
for numerous parameter values. I then provide intuition for the mechanics at work within
the model that drive the observed results. These results are detailed in Table 3.

Table 3: Main Results
Game Planner

Parameter Repayment Project Repayment Project
µH , αH always repay safe projects always repay risky projects
µH , αL repay unless both fail risky projects always repay risky projects
µL, αH repay unless both fail risky projects always repay risky projects
µL, αL always repay safe projects always repay risky projects
µH = 0.95, µL = 0.65, αL = 1, αH = 3, w = 5, R = 3, θ = 0.25, γ = u(α=1)(S), η = γ/100.

In all the numerical examples considered, it is efficient for both households to invest
in the risky lottery and repay whenever feasible (i.e. in all states, except λ = (0, 0)).
The first numerical example explores the case where both the probability of success of the
projects (i.e. P [λi ≥ 1]) as well as the household risk aversion are high. Here, in equilibrium
both households choose the safe project and repay in every state of the world. It is also
observed that this repayment is sustained without peer pressure from either household in
any state of the world3. The repayment is sustained by a high continuation value owing to
the high probability of success. The conservative project choice is a consequence of high risk
aversion. This ensures that the continuation value of choosing the risky projects is lower
than the same safe lotteries. This is illustrated in the Figure 6 below. The second example

3 Note that given the selection mechanism proposed, institutional pressure is always applied. It is worth
noting, there also exists a monotone repayment equilibrium to this game where no repayment occurs in any
state and consequently, the MFI chooses not to operate. This establishes that in this game, peer pressure is
not sufficient to ensure repayment.
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maintains a high probability of success but sets the household risk aversion level low. Here,
in equilibrium both households choose the risky project and repay in every state of the
world. Repayment occurs in all states except when both households fail simultaneously (i.e.
λ = (0, 0)). Repayment (when it occurs) is sustained by peer pressure from both households.
Project choices are a result of the fact that households are only mildly risk averse. It is
evident from Figure 6 below that the continuation value of choosing the risky projects
is now higher than the same for safe projects. The third and fourth examples set a low
probability of success. The striking finding in these examples is that, contrary to the earlier
examples, with high risk aversion, households choose the risky projects and repay whenever
feasible. While with low risk aversion, households choose the safe projects and repay always.
This switch is a consequence of the switch in the continuation values as illustrated in Figure
7. When the probability of success is low, continuation values are lower. Thus, repayment
of highly risk averse households is sustained through peer pressure from both households in
all states. In equilibrium, risk averse households internalize the excessive pressure they will
come under regardless of the projects chosen. In the safe project, repayment occurs even in
the state where both households fail simultaneously (an event that now occurs with higher
probability). However, if a household invests in the risky project instead, it has to repay
a smaller share if it fails. Thus, both households rationally respond by choosing the risky
project.

Figure 6: Continuation value as a function of α when µ = µH

Figure 7: Continuation value as a function of α when µ = µL
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It is interesting to note that this pattern is robust to changes in the initial wealth level
(w). This suggests a generalizability of the finding that over-exertion of pressure on debtors
to repay leads to an inefficient allocation of capital. This is consistent with findings in
Acharya, Amihud and Litov (2011) and Kind, Wende (2019). Another useful generalization
is to allow for the project returns to be correlated across households. In an attempt to study
this, the returns to the projects are re-parametrized as in Table 4.

Table 4: P(λ|LA, LB) with correlation parameter ρ

λ P(λ|Lsafe, Lsafe) λ P(λ|Lsafe, Lrisky) λ P(λ|Lrisky, Lrisky)
(0.5,0.5) (1− µ)2 + ρµ(1− µ) (0.5,0) (1− µ)2 + ρµ(1− µ) (0,0) (1− µ)2 + ρµ(1− µ)
(0.5,1) µ(1− µ)(1− ρ) (0.5,2) µ(1− µ)(1− ρ) (0,2) µ(1− µ)(1− ρ)
(1,0.5) µ(1− µ)(1− ρ) (1,0) µ(1− µ)(1− ρ) (2,0) µ(1− µ)(1− ρ)
(1,1) µ2 + ρµ(1− µ) (1,2) µ2 + ρµ(1− µ) (2,2) µ2 + ρµ(1− µ)

For low values of correlation (ρ) the results are identical to those above. However, an
interesting features occur for high correlation. In Table 5, I present the results for the
extreme case of fully correlated projects. Here, the interesting finding is for the case with
high probability of success and only mildly risk averse households. One household chooses
the risky project while the other chooses the safe project. Repayment occurs in all states
and is sustained by peer pressure from both households. Suppose household A chose the
safe project, note that household B knows that choosing the risky lottery has no downside,
since either both fail or both succeed. If both fail, the peer pressure sustains repayment. In
response to household B choosing the risky project, household A does not also choose the
risky lottery. This is because if both fail, there will be no repayment and consequently the
continuation value is lower.
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Table 5: Results with fully correlated projects
Game Planner

Parameter Repayment Project Repayment Project
µH , αH always repay safe projects always repay risky projects
µH , αL always risky mixed projects always repay risky projects
µL, αH repay unless both fail risky projects always repay risky projects
µL, αL always repay safe projects always repay risky projects
µH = 0.95, µL = 0.65, αL = 1, αH = 3, w = 5, R = 3, θ = 0.25, γ = u(α=1)(S), η = γ/100.

These results suggest the detrimental role of excessive top-down pressure in group lending
programs. Excessive pressure to repay induces the high rates of repayment observed among
not-for profit MFI. This is often celebrated as an indicator of the success of group lending
programs in solving problems of moral hazard and adverse selection associated with lending
in the absence of financial collateral. This paper demonstrates how this transfer of risk from
the MFI to the households result in the latter inefficiently choosing the invest the loan in
safer projects rather than high risk high reward projects which could substantially aid the
alleviation of poverty.
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Appendix

Proof for Proposition 1:

Suppose to the contrary that the repayment is not full, then,
∑

j d
λ(δλ)jx̃j(λ) < 2. Thus,

both households in the group are penalized and are unable to participate in the program
thereafter. Let i denote a household such that δλi = 1. Exploring the profitability of a
one shot deviation for node i. Consider the utility to household i of applying pressure
(j = {A,B} \ i):

Ui( applying pressure , σ;λ) = u(w +Rλi − rx̃i(λ)dλi )− η
− γmax

{
(1− dλj ), δλj (1− dλi )

}
Consider now its utility of not applying pressure:

Ui( no pressure , σ;λ) = u(w +Rλi − rx̃i(λ)dλi )

− γδλj (1− dλi )

Given η > 0, one can see that

Ui( no pressure , σ;λ) > Ui( applying pressure , σ;λ)

Hence there exists a profitable one-shot deviation for i implying that σ cannot be a sub-game
perfect equilibrium so long as P(λ) > 0. �

Illustration for monotone repayment response to peer pressure assumption:

Consider the following behavior that would be consistent with sub-game perfection driven
entirely by the complementarity of repayments:

In state λ 6= (0, 0):{
δ∗A = δ∗B = 0; dλ(δ) =

{
(1, 1), if δ = (0, 0)

(0, 0), if δ 6= (0, 0)

}

Although this is optimal, as long as

φ(r) ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> γ

φ(r) ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> γ

While the model would regard this behavior as rational, I would like to rule out this kind
of behavior. That is, if the participants select an equilibrium with full repayment without
pressure, then the addition of pressure should not cause them to select an equilibrium with
lower repayment. N
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Proof for Proposition 2:

When λ = (0, 0), notice that x̃A(λ) = x̃B(λ) = 0, i.e. the social repayment norm does not
yield full repayment. In the parlance of the model, φ(r) · 1

{
dAx̃A(λ) + dBx̃B(λ) = 2

}
= 0.

Thus, there is no incentive for households to apply any costly pressure (η > 0) to force other
households to follow the social repayment norm. An application of the contrapositive of the
proposition 4 yields that in any sub-game perfect equilibrium, no pressure is applied, the
repayment and punishments observed are identical. �

Proof for Proposition 3:

1. Suppose to the contrary that dλ(0, 0) = (1, 0) in some state of the world λ. Looking
at the payoffs to household A implied by the game.
When household A repays:

UA(repay) = u
(
w +RλA − rx̃A(λ)

)
+ φ(r) · 0

When household A deviates by not repaying:

UA(deviate) = u
(
w +RλA

)
+ φ(r) · 0− γ · 0

Here, UA(repay) < UA(deviate) since the repayment norm specified xA(λ) > 0 in any
λ 6= (0, 0) and r > 1. Thus, as long as at least one household succeeds, household
A would strictly prefer not repaying. This yields a contradiction in every λ. By a
symmetric argument, one can establish a contradiction for dλ(0, 0) = (0, 1).
So, this establish that for all λ 6= (0, 0), dλ(0, 0) ∈ {(0, 0), (1, 1)}.
This reduces the number of candidate sub game optimal repayment plays to 128.

2. Suppose in some state λ 6= (0, 0) where households play a sub-game perfect repayment
play with dλ(.). Now, consider the event where household A applies pressure; notice
that for household A, utility of following social repayment norm is

UA(repay) = u
(
w+RλA−rx̃A(λ)

)
−γmax {δA(1−dB), δB(1−dA)} = u

(
w+RλA−rx̃A(λ)

)
−γ

while the utility of deviating is

UA(deviate) = u
(
w +RλA

)
− γmax {δA(1− dB), δB(1− dA)} = u

(
w +RλA

)
− γ

Here, UA(repay) < UA(deviate) since the repayment norm specified xA(λ) > 0 in any
λ 6= (0, 0) and r > 1. Thus, as long as at least one household succeeds, household A
would strictly prefer not repaying. Thus, dλ(1, 0) = (1, 0) in not optimal.
By a symmetric argument, one can establish a contradiction for dλ(0, 1) = (0, 1) is sub
optimal in any λ 6= (0, 0).
This further reduces the number of candidate sub game optimal repayment plays to 64.

3. Suppose in some state λ 6= (0, 0) where households play a sub-game perfect equilibrium
with repayment play dλ(1, 1) = (1, 0). Now, consider the event where household A
applies pressure, notice that for household A, utility of following social repayment
norm is

UA(repay) = u
(
w+RλA−rx̃A(λ)

)
−γmax {δA(1−dB), δB(1−dA)} = u

(
w+RλA−rx̃A(λ)

)
−γ
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while the utility of deviating is

UA(deviate) = u
(
w +RλA

)
− γmax {δA(1− dB), δB(1− dA)} = u

(
w +RλA

)
− γ

Here, UA(repay) < UA(deviate) since the repayment norm specified xA(λ) > 0 in any
λ 6= (0, 0) and r > 1. Thus, as long as at least one household succeeds, household A
would strictly prefer not repaying. Thus, dλ(1, 1) = (1, 0) in not optimal.
By a symmetric argument, one can establish a contradiction for dλ(1, 1) = (0, 1) is sub
optimal in any λ 6= (0, 0).
This further reduces the number of candidate sub game optimal repayment plays to 36.
�

List of 11 repayment plays for Proposition 4:

• When λ 6= (0, 0):
1.

dλ(δ) = (0, 0), for all δ

2.
dλ(δ) = (1, 1), for all δ

3.

dλ(δ) =

{
(0, 0), if δB = 0

(1, 1), if δB = 1

4.

dλ(δ) =

{
(0, 0), if δA = 0

(1, 1), if δA = 1

5.

dλ(δ) =

{
(0, 0), if δA + δB < 2

(1, 1), if δA + δB = 2

6.

dλ(δ) =


(0, 0), if δA = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δA = 1, δB = 1

7.

dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

8.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1
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9.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δB = 1

10.

dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1

11.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1, δB = 1

• When λ = (0, 0), restrict attention to dλ(δ) = (0, 0), ∀δ. N

Characterizing the admissible equilibria:

Following the arguments of backward induction:
Stage 2 best responses
Now, restricting attention to these 11 repayment plays, consider the set of sub-game perfect
equilibria that emerge and how that varies over the parameter space. Given the assumption
that deals with optimal play in sub-games with λ = (0, 0), the rest of the analysis of the
equilibrium will focus on dealing with sub-games where λ 6= (0, 0). For households i ∈ {A,B}
and j ∈ {A,B} − i, let di(δi, δj, dj) denote the best response by household i given δi, δj and
dj which also depends on λ but has been suppressed in notation to enhance readability:

1. di(δj = dj = 0) =?

di = 1 vs di = 0

u
(
w +Rλi − rx̃i(λ)

)
− γδi − ηδi vs u

(
w +Rλi

)
− γδi − ηδi

u
(
w +Rλi − rx̃i(λ)

)
< u

(
w +Rλi

)
since rx̃i(λ) > 0 for all λ 6= (0, 0). Thus,

di(δj = dj = 0) = 0, for all parameter values

2. di(δj = 0, dj = 1) =?

di = 1 vs di = 0

u
(
w +Rλi − rx̃i(λ)

)
+ φ(r)− ηδi vs u

(
w +Rλi

)
− ηδi

u
(
w +Rλi − rx̃i(λ)

)
+ φ(r) vs u

(
w +Rλi

)
Thus,

di(δj = 0, dj = 1) =

{
1, if φ(r) ≥ u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
0, if φ(r) < u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
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3. di(δj = 1, dj = 0) =?

di = 1 vs di = 0

u
(
w +Rλi − rx̃i(λ)

)
− γδi − ηδi vs u

(
w +Rλi

)
− γ − ηδi

(1− δi)γ vs u
(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
This depends on whether or not node i is applying pressure and thus can be split into
two cases:

(a) di(δi = 0, δj = 1, dj = 0) =

{
1, if γ ≥ u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
0, if γ < u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
(b) di(δi = 1, δj = 1, dj = 0) = 0, for all parameter values

4. di(δj = 1, dj = 1) =?

di = 1 vs di = 0

u
(
w +Rλi − rx̃i(λ)

)
+ φ(r)− ηδi vs u

(
w +Rλi

)
− γ − ηδi

u
(
w +Rλi − rx̃i(λ)

)
+ φ(r) vs u

(
w +Rλi

)
− γ

γ + φ(r) vs u
(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
Thus,

di(δj = 1, dj = 1) =

{
1, if γ + φ(r) ≥ u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
0, if γ + φ(r) < u

(
w +Rλi

)
− u
(
w +Rλi − rx̃i(λ)

)
This is now used to find parametric ranges where each of the 11 repayment plays are

supported for different realizations of λ 6= (0, 0).
1.

dλ(δ) = (0, 0), for all δ

This is supported when:

γ < u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
γ < u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
2.

dλ(δ) = (1, 1), for all δ

This is supported when:

φ(r) ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
3.

dλ(δ) =

{
(0, 0), if δB = 0

(1, 1), if δB = 1

This is supported when:

φ(r) + γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
> γ
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4.

dλ(δ) =

{
(0, 0), if δA = 0

(1, 1), if δA = 1

This is supported when:

φ(r) ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
> γ

φ(r) + γ ≥ u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
5.

dλ(δ) =

{
(0, 0), if δA + δB < 2

(1, 1), if δA + δB = 2

This is supported when:

φ(r) + γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
> γ

φ(r) + γ ≥ u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
> γ

6.

dλ(δ) =


(0, 0), if δA = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δA = 1, δB = 1

This is supported when:

φ(r) + γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
> max{φ(r), γ}

γ ≥ u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
7.

dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

This is supported when:

γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
φ(r) + γ ≥ u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
> max{φ(r), γ}

8.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1

This is supported when:

min{φ(r), γ} ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
φ(r) + γ ≥ u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
> φ(r)
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9.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δB = 1

This is supported when:

φ(r) + γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
> φ(r)

min{φ(r), γ} ≥ u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
10.

dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1

This is supported when:

φ(r) ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB)− u(w +RλB − rx̃B(λ)

)
11.

dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1, δB = 1

This is supported when:

γ ≥ u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
> φ(r)

γ ≥ u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
> φ(r)

Notice also that when λ = (0, 0), dλ(δ) = (0, 0), ∀δ is supported on all parameter values
since the norm does not induce repayment.
Stage 1 best responses
The first stage best response depends on the chosen sub-game perfect repayment play. Here,
the best responses under the 11 different repayment plays are explored.

1. If dλ(δ) = (0, 0), ∀δ is the repayment play:
For A:

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA

)
− γ − η < u

(
w +RλA

)
− γδB

Thus, δ∗A = 0 and by a similar argument, δ∗B = 0.
This results in the following equilibrium profile that may arise in sub-games with any
realization of λ (

δ∗A = δ∗B = 0; dλ(δ) = (0, 0), ∀δ
)

and the required parametric restrictions are:
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• If λ = (0, 0), without further parametric restrictions
• If λ 6= (0, 0), then the parametric restrictions are

u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> γ

u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> γ

2. If dλ(δ) = (1, 1), ∀δ is the repayment play:
For A:

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η < u

(
w +RλA − rx̃A(λ)

)
+ φ(r)

Thus, δ∗A = 0 and by a similar argument, δ∗B = 0.
This results in sub-game perfect equilibrium profile(

δ∗A = δ∗B = 0; dλ(δ) = (1, 1), ∀δ
)

and the required parametric restrictions are:
λ 6= (0, 0), further parametric restrictions are

φ(r) ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
3. If dλ(δ) =

{
(0, 0), if δB = 0

(1, 1), if δB = 1
is the repayment play:

For A (when δB = 0):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA

)
− γ − η < u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η < u

(
w +RλA − rx̃A(λ)

)
+ φ(r)

Thus, δ∗A = 0 is dominant for A.
For B (given δ∗A = 0):

UB(apply pressure) ? UB(no pressure)

depend on whether u
(
w +RλB − rx̃B(λ)

)
+ φ(r)− η ≥ u

(
w +RλB

)
or u

(
w +RλB − rx̃B(λ)

)
+ φ(r)− η < u

(
w +RλB

)
There are thus two equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:
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•

(
δ∗A = 0, δ∗B = 1; dλ(δ) =

{
(0, 0), if δB = 0

(1, 1), if δB = 1

)
when

φ(r) + γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r)− η ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> γ

•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =

{
(0, 0), if δB = 0

(1, 1), if δB = 1

)
when

φ(r) + γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> max{φ(r)− η, γ}

4. If dλ(δ) =

{
(0, 0), if δA = 0

(1, 1), if δA = 1
is the repayment play:

A symmetric analysis to the above case yields that there are two equilibrium profiles
in sub-games with λ 6= (0, 0):

•

(
δ∗A = 1, δ∗B = 0; dλ(δ) =

{
(0, 0), if δA = 0

(1, 1), if δA = 1

)
when

φ(r)− η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> γ

φ(r) + γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =

{
(0, 0), if δA = 0

(1, 1), if δA = 1

)
when

φ(r) ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> max{φ(r)− η, γ}

φ(r) + γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
5. If dλ(δ) =

{
(0, 0), if δA + δB < 2

(1, 1), if δA + δB = 2
is the repayment play:

For A (when δB = 0):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA

)
− γ − η < u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) ? UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η ? u

(
w +RλA

)
− γ

Thus, δ∗A(δB) = δB if

φ(r) + γ − η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
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and δ∗A(δB) = 0 if

φ(r) + γ − η < u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
For B, the analysis is symmetric:
δ∗B(δA) = δA if

φ(r) + γ − η ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
and δ∗B(δA) = 0 if

φ(r) + γ − η < u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
There are thus five equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:

•

(
δ∗A = δ∗B = 0; dλ(δ) =

{
(0, 0), if δA + δB < 2

(1, 1), if δA + δB = 2

)
when

φ(r) + γ ≥ u
(
w +RλA − rx̃A(λ)

)
− u
(
w +RλA

)
> γ

φ(r) + γ ≥ u
(
w +RλB − rx̃B(λ)

)
− u
(
w +RλB

)
> γ

•

(
δ∗A = δ∗B = 1; dλ(δ) =

{
(0, 0), if δA + δB < 2

(1, 1), if δA + δB = 2

)
when

φ(r) + γ − η ≥ u
(
w +RλA − rx̃A(λ)

)
− u
(
w +RλA

)
> γ

φ(r) + γ − η ≥ u
(
w +RλB − rx̃B(λ)

)
− u
(
w +RλB

)
> γ

6. If dλ(δ) =


(0, 0), if δA = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δA = 1, δB = 1

is the repayment play:

By symmetric analysis to the following case, there exist two equilibrium profiles in
sub-games with λ 6= (0, 0) that may emerge:

•

(
δ∗A = δ∗B = 0; dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

)
when

φ(r) + γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> max{γ, φ(r) + γ − η}

γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
•

(
δ∗A = δ∗B = 1; dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

)
when

φ(r) + γ − η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> max{γ, φ(r)}

γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
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7. If dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

is the repayment play:

For A (when δB = 0):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA

)
− γ − η < u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) > UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η > u

(
w +RλA − rx̃A(λ)

)
Thus, δ∗A(δB) = δB.
For B (when δA = 0):

UB(apply pressure) < UB(no pressure)

since u
(
w +RλB

)
− η < u

(
w +RλB

)
(when δA = 1):

UB(apply pressure) ? UB(no pressure)

since u
(
w +RλB − rx̃B(λ)

)
+ φ(r)− η ? u

(
w +RλB

)
− γ

Thus, δ∗B(δA) = δA when

φ(r) + γ − η ≥ u
(
w +RλB − rx̃B(λ)

)
− u
(
w +RλB

)
and δ∗B(δA) = 0 when

u
(
w +RλB − rx̃B(λ)

)
− u
(
w +RλB

)
> φ(r) + γ − η

There are thus two equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:

•

(
δ∗A = δ∗B = 0; dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

)
when

γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) + γ ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> max{γ, φ(r) + γ − η}

•

(
δ∗A = δ∗B = 1; dλ(δ) =


(0, 0), if δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1, δB = 1

)
when

γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) + γ − η ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> max{γ, φ(r)}
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8. If dλ(δ) =


(0, 0), if δA = 0, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1

is the repayment play:

For A (when δB = 0):

UA(apply pressure) ? UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η ? u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) > UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η > u

(
w +RλA − rx̃A(λ)

)
Thus, δ∗A(δB) = δB when

φ(r)− η < u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
and δ∗A(δB) = 1 when

φ(r)− η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
For B (when δA = 0):

UB(apply pressure) < UB(no pressure)

since u
(
w +RλB

)
− η < u

(
w +RλB

)
(when δB = 1):

UB(apply pressure) < UB(no pressure)

since u
(
w +RλB − rx̃B(λ)

)
+ φ(r)− η < u

(
w +RλB − rx̃B(λ)

)
+ φ(r)

Thus, δ∗B(δA) = 0
There are thus two equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:

•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1

)
when

min{φ(r), γ} ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> φ(r)− η

φ(r) + γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)

•

(
δ∗A = 1, δ∗B = 0; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(1, 0), if δB = 1, δA = 0

(1, 1), if δA = 1

)
when

min{φ(r)− η, γ} ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) + γ ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)
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9. If dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δB = 1

is the repayment play:

By symmetric analysis to the above case, the equilibrium profiles in sub-games with
λ 6= (0, 0) that may emerge:

•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δB = 1

)
when

φ(r) + γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> φ(r)

min{φ(r), γ} ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)− η

•

(
δ∗A = 0, δ∗B = 1; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 1), if δB = 1

)
when

φ(r) + γ ≥ u
(
w +RλA)− u

(
w +RλA − rx̃A(λ)

)
> φ(r)

min{φ(r)− η, γ} ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
10. If dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1
is the repayment play:

For A (when δB = 0):

UA(apply pressure) ? UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η ? u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η < u

(
w +RλA − rx̃A(λ)

)
+ φ(r)

Thus, δ∗A(δB) = 1− δB when

φ(r)− η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
and δ∗A(δB) = 0 when

φ(r)− η < u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
By symmetry, for B, δ∗B(δA) = 1− δA when

φ(r)− η ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
and δ∗B(δA) = 0 when

φ(r)− η < u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
There are thus three equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:
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•

(
δ∗A = 1, δ∗B = 0; dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1
when

φ(r)− η ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r) ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
•

(
δ∗A = 0, δ∗B = 1; dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1
when

φ(r) ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
φ(r)− η ≥ u

(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =

{
(0, 0), if δA + δB = 0

(1, 1), if δA + δB ≥ 1
when

φ(r) ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> φ(r)− η

φ(r) ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)− η

11. If dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1, δB = 1

is the chosen repayment play:

For A (when δB = 0):

UA(apply pressure) < UA(no pressure)

since u
(
w +RλA

)
− η < u

(
w +RλA

)
(when δB = 1):

UA(apply pressure) > UA(no pressure)

since u
(
w +RλA − rx̃A(λ)

)
+ φ(r)− η > u

(
w +RλA − rx̃A(λ)

)
if and only if φ(r) > η.
Thus, δ∗A(δB) = δB.
By symmetry, δ∗B(δA) = δA.
There are thus two equilibrium profiles in sub-games with λ 6= (0, 0) that may emerge:

•

(
δ∗A = 0, δ∗B = 0; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1, δB = 1

)
when

γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> φ(r)

γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)
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•

(
δ∗A = 1, δ∗B = 1; dλ(δ) =


(0, 0), if δA = 0, δB = 0

(0, 1), if δA = 1, δB = 0

(1, 0), if δA = 0, δB = 1

(1, 1), if δA = 1, δB = 1

)
when

γ ≥ u
(
w +RλA

)
− u
(
w +RλA − rx̃A(λ)

)
> φ(r)

γ ≥ u
(
w +RλB

)
− u
(
w +RλB − rx̃B(λ)

)
> φ(r)

φ(r) ≥ η

Remark: households are not restricted to commit to a repayment play before the state
has been realized.

On equilibrium path action profiles:
The analysis is conducted for sub-games starting at investment outcome realization λ:
For ease of notation, define:

u
(
w +RλA)− u(w +RλA − rx̃A(λ)

)
≡ XA(λ)

u
(
w +RλB)− u(w +RλB − rx̃B(λ)

)
≡ XB(λ)

1. δA = δB = 0; dA = dB = 0
For all parametric values when λ = (0, 0)
When λ 6= (0, 0):
• XA(λ) > γ and XB(λ) > γ
• φ(r) + γ ≥ XA(λ) and φ(r) ≥ XB(λ) > max{γ, φ(r)− η}
• φ(r) ≥ XA(λ) > max{γ, φ(r)− η} and φ(r) + γ ≥ XB(λ)
• φ(r) + γ ≥ XA(λ) > γ and φ(r) + γ ≥ XB(λ) > γ
• γ ≥ XA(λ) and φ(r) + γ ≥ XB(λ) > max{γ, φ(r) + γ − η}
• φ(r) + γ ≥ XA(λ) > max{γ, φ(r) + γ − η} and γ ≥ XB(λ)
• φ(r) ≥ XA(λ) > φ(r)− η and φ(r) ≥ XB(λ) > φ(r)− η
• γ ≥ XA(λ) > φ(r) and γ ≥ XB(λ) > φ(r)
• min{φ(r), γ} ≥ XA(λ) > φ(r)− η and φ(r) + γ ≥ XB(λ) > φ(r)
• φ(r) + γ ≥ XA(λ) > φ(r) and min{φ(r), γ} ≥ XB(λ) > φ(r)− η

2. δA = δB = 0; dA = dB = 1
When λ 6= (0, 0):
• φ(r) ≥ XA(λ) and φ(r) ≥ XB(λ)

3. δA = 1, δB = 0; dA = dB = 1 When λ 6= (0, 0):
• φ(r)− η ≥ XA(λ) > γ and φ(r) + γ ≥ XB(λ)
• min{φ(r)− η, γ} ≥ XA(λ) and φ(r) + γ ≥ XB(λ) > φ(r)
• φ(r)− η ≥ XA(λ) and φ(r) ≥ XB(λ)

4. δA = 0, δB = 1; dA = dB = 1 When λ 6= (0, 0):
• φ(r) + γ ≥ XA(λ) and φ(r)− η ≥ XB(λ) > γ
• φ(r) + γ ≥ XA(λ) > φ(r) and min{φ(r)− η, γ} ≥ XB(λ)
• φ(r) ≥ XA(λ) and φ(r)− η ≥ XB(λ)

5. δA = δB = 1; dA = dB = 1 When λ 6= (0, 0):
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• φ(r) + γ − η ≥ XA(λ) > γ and φ(r) + γ − η ≥ XB(λ) > γ
• γ ≥ XA(λ) and φ(r) + γ − η ≥ XB(λ) > max{φ(r), γ}
• φ(r) + γ − η ≥ XA(λ) > max{φ(r), γ} and γ ≥ XB(λ)
• γ ≥ XA(λ) > φ(r) and γ ≥ XB(λ) > φ(r) and φ(r) ≥ η N

Setting φ(·, ·, ·):

The continuation values for different lottery choices are now established.

Both play safe

φ(r, Lsafe, Lsafe)1 = β

{
µ
[
u(w +R− r)

]
+ (1− µ)

[
u(w + 0.5 ·R− r)

]
+ φ(r, Lsafe, Lsafe)1

}

φ0 = β

[
u(w) + φ0

]
φ(r, Lsafe, Lsafe) = φ(r, Lsafe, Lsafe)1 − φ0

The solution to this system is attained at:

φ0 =
βu(w)

1− β

φ(r, Lsafe, Lsafe)1 =
βEUSS(norm)

1− β
where

EUSS(norm) = µ
[
u(w +R− r)

]
+ (1− µ)

[
u(w + 0.5 ·R− r)

]
and hence

φ(r, Lsafe, Lsafe) =
β
[
EUSS(norm)− u(w)

]
1− β

Both go risky

φ(r, Lrisky, Lrisky)1 =β

{
µ2
[
u(w + 2R− r) + φ(r, Lrisky, Lrisky)1

]
+ µ(1− µ)

[
u(w + 2R− (2− 0.5θ)r) + φ(r, Lrisky, Lrisky)1

]
+ (1− µ)µ

[
u(w − 0.5θ · r) + φ(r, Lrisky, Lrisky)1

]
+ (1− µ)2

[
u(w) + φ0

]}

φ0 = β

[
u(w) + φ0

]
φ(r, Lrisky, Lrisky) = φ(r, Lrisky, Lrisky)1 − φ0

The solution to this system is attained at:
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φ0 =
βu(w)

1− β

φ(r, Lrisky, Lrisky)1 =
βEURR(norm) + βφ0(1− µ)2

1− βµ(2− µ)

where

EURR(norm) = µ2
[
u(w + 2R− r)

]
+ µ(1− µ)

[
u(w + 2R− (2− 0.5θ)r)

]
+ (1− µ)µ

[
u(w − 0.5θr)

]
+ (1− µ)2

[
u(w)

]
and hence

φ(r, Lrisky, Lrisky) =
βEURR(norm) + (β − 1)φ0

1− βµ(2− µ)

A goes risky - B goes safe

φ(r, Lrisky, Lsafe)1 =β

{
µ2
[
u(w + 2R− r) + φ(r, Lrisky, Lsafe))1

]
+ µ(1− µ)

[
u(w + 2R− r) + φ(r, Lrisky, Lsafe))1

]
+ (1− µ)µ

[
u(w − θr) + φ(r, Lrisky, Lsafe))1

]
+ (1− µ)2

[
u(w − 2θr) + φ(r, Lrisky, Lsafe))1

]}

φ0 = β

[
u(w) + φ0

]
φ(r, Lrisky, Lsafe)) = φRS1 − φ0

The solution to this system is attained at:

φ0 =
βu(w)

1− β

φ(r, Lrisky, Lsafe))1 =
βEURS(norm)

1− β
where

EURS(norm) = µ
[
u(w + 2R− r)

]
+ (1− µ)µ

[
u(w − θr)

]
+ (1− µ)2

[
u(w − 2θr)

]
and hence

φ(r, Lrisky, Lsafe)) =
β
[
EURS(norm)− u(w)

]
1− β
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A goes safe - B goes risky

φ(r, Lsafe, Lrisky)1 =β

{
µ2
[
u(w +R− r) + φ(r, Lsafe, Lrisky)1

]
+ µ(1− µ)

[
u(w +R− (2− θ)r) + φ(r, Lsafe, Lrisky)1

]
+ (1− µ)µ

[
u(w + 0.5R− r) + φ(r, Lsafe, Lrisky)1

]
+ (1− µ)2

[
u(w + 0.5R− (2− θ)r) + φ(r, Lsafe, Lrisky)1

]}

φ0 = β

[
u(w) + φ0

]
φ(r, Lsafe, Lrisky) = φSR1 − φ0

The solution to this system is attained at:

φ0 =
βu(w)

1− β

φ(r, Lsafe, Lrisky)1 =
βEUSR(norm)

1− β
where

EUSR(norm) = µ2
[
u(w +R− r)

]
+ µ(1− µ)

[
u(w +R− (2− θ)r)

]
+ (1− µ)µ

[
u(w + 0.5R− r)

]
+ (1− µ)2

[
u(w + 0.5R− (2− 2θ)r)

]
and hence

φ(r, Lsafe, Lrisky) =
β
[
EUSR(norm)− u(w)

]
1− β

N
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