ECON 6100	02/19/2021
Section	1
Lecturer: Larry Blume	TA: Abhi Ananth

^{*} These notes develop Fikri Pitsuwan's notes from 2017.

Logistics

- OH: Thus 4-6 pm
- Material available at: https://abhiananthecon.github.io/teaching/
- Same link for office hours and sections
- Please email me with subject header 6100 to be a part of the mailing list
- Thu 6pm deadline for topic suggestions
- Questions?

Today we will look at:

- 1. Farka's lemma
- 2. Canonical and standard form
- 3. Vertex theorem

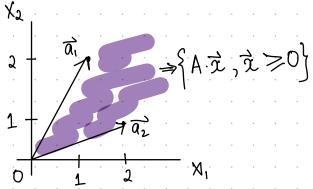
1 Review

Let's start with Farka's lemma. It states that for any $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, **exactly one** of the following **will hold**:

- There is some $x \in \mathbb{R}^n$ satisfying $x \ge 0$ and Ax = b.
- There is some $y \in \mathbb{R}^m$ satisfying $yA \ge 0$ and yb < 0.

Farka's Lemma:

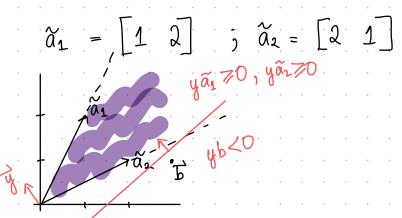
Suppose
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \overrightarrow{a_1}$$
, $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$



If
$$\vec{b}$$
 lies in purple area, $A\vec{x} = \vec{b}$, $\vec{x} \ge \vec{0}$ has a solution. Eg $\vec{b} = (1,1) \longrightarrow x^*(\vec{b}) = (35,1)$. Else, it has no solution. Eg $\vec{b} = (3,1)$.

Forka's lemma says that when
$$\{\vec{x} \ge 0 : A\vec{x} = b\} = \emptyset$$
,
then $\{\vec{y}: \vec{y} A \ge \vec{0}, \vec{y} b < 0\} \neq \emptyset$.

$$\widetilde{\alpha}_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}$$
 $\widetilde{\alpha}_2 = \begin{bmatrix} 2 & 1 \end{bmatrix}$



Why it matters?

- Neat application of the separating hyperplane theorem
- Easy to verify criterion for feasibility of a linear program

A linear program can be written in *canonical form* as

$$v_p(b) = \max c \cdot x$$

s. t. $Ax \le b$
 $x \ge 0$

where $c \in \mathbb{R}^n$, $x \in \mathbb{R}^n$, A is an $m \times n$ matrix, $b \in \mathbb{R}^m$. Any linear program can also be written in *standard form* as

$$v_p(b) = \max c \cdot x$$

s. t. $Ax = b$
 $x > 0$

Given an inequality constraint $2x_1 + 3x_2 \le 5$ and $x_1, x_2 \ge 0$, we can introduce a slack variable $z_1 \ge 0$, so that the constraint becomes $2x_1 + 3x_2 + z_1 = 5$. Given an equality constraint $x_1 + 2x_2 = 3$, we can express this as $x_1 + 2x_2 \le 3$ and $-x_1 - 2x_2 \le -3$. A linear program with no non-negativity constraint can be dealt with by expressing x = y - z with $y \ge 0$ and $z \ge 0$.

Here are some important definitions in linear programming.

Definition 1. Any $x \in \mathbb{R}^n$ is called a *solution*.

Definition 2. For a linear program in canonical form, $C = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ is called the *constraint set* or the *feasible set*. Any $x \in C$ is called a *feasible solution*.

Definition 3. A vector x that actually solves the linear program, i.e., $x \in C$ and $c \cdot x \ge c \cdot x'$ for all $x' \in C$ is called an *optimal solution*.

Definition 4. A vector $x \in C$ is a vertex of C if and only if there is no $y \neq 0$ such that x + y and x - y are both in C.

Theorem (Vertex Theorem). For a linear program in standard form with feasible solutions, a vertex exists and if $v_p(b) < \infty$ and $x \in C$, then there is a vertex x' such that $c \cdot x' \ge c \cdot x$.

Notes

A good reference on linear programming is *Introduction to Linear Optimization* by Bertsimas and Tsitsiklis.

2 Problems

Problem 1. Consider the following linear program

$$\max 2x_1 + x_2$$

s. t. $x_1 + x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$

- (a) Express the linear program in canonical form and draw the constraint set and solve the problem graphically.
- (b) Express the linear program in standard form and draw the constraint set.
- (c) Verify that the vertex theorem applies. Use the vertex theorem to find an optimal solution of the linear program.

Problem 2. Consider the following linear program

$$\max 2x_1 + x_2$$

s. t. $x_1 + x_2 \le 1$
 $2x_2 - x_1 \ge -1$

- (a) Draw the constraint set as given and solve the problem graphically.
- (b) Solve the problem using the Kuhn-Tucker formulation
- (c) Express the linear program in canonical form and in standard form.

Problem 3. Consider a utility maximization problem with $u(x) = \sum_{i=1}^{n} \alpha_i x_i$, where $\alpha_i > 0$ for all i.

- (a) Express the problem as a linear program in canonical form. What is the feasible set? What are c, A, and b?
- (b) Solve the UMP for n=2 using the Kuhn-Tucker formulation with $\alpha_1=3$, $\alpha_2=2$, $p_1=3$, $p_2=1$, w=3. Verify your solution graphically.