

Problem 1 (2011 June V)**.** Consider an economy in which there is one public good (*x*) and one private good (*y*). There are *I* individuals, indexed $i = 1, \ldots, I$ (with $I \geq 2$). Individual *i* has an endowment $a_i > 0$ of the private good, and none of the public good. The total endowment of the private good, $(a_1 + \cdots + a_l)$, is denoted by *a*. The public good can be produced from the private good, using a production function, $h: \mathbb{R}_+ \to \mathbb{R}_+$. Assume that *h* has the following form: $h(z) = z$ for $z \in \mathbb{R}_+$.

Each individual's consumption set is \mathbb{R}_+^2 and consumer *i*'s preferences are represented by a utility function:

$$
u_i(x, y_i) = f_i(x) + g_i(y_i) \text{ for } (x, y_i) \in \mathbb{R}_+^2
$$

For each $i \in \{1, \ldots, I\}$, the functions f_i and g_i are assumed to satisfy:

- (A1) $f_i(0) = 0$; f_i is increasing, strictly concave and continuously differentiable on \mathbb{R}_+ .
- (A1) $g_i(0) = 0$; g_i is increasing, strictly concave and continuously differentiable on \mathbb{R}_+ .
- (A1) $f_i(a) < g_i(a_i)$ and $f'_i(0) > g'_i(a_i)$
	- (a) Let $(x, y_1, \ldots, y_I) \gg 0$ be a Pareto Efficient allocation. Show that:

$$
\sum_{i=1}^{I} \frac{f'_i(x)}{g'_i(y_i)} = 1
$$

(b) Let (c_1, \ldots, c_I) be a voluntary contributions equilibrium, with $c_i \in [0, a_i]$ for each $i \in \{1, \ldots, I\}$. The associated allocation (x, y_1, \ldots, y_I) is defined by:

$$
x = \sum_{i=1}^{I} c_i \text{ and } y_i = a_i - c_i \text{ for all } i \in \{1, \dots, I\}
$$

- (i) Show that we must have $c_i < a_i$ for each $i \in \{1, ..., I\}$, and $\sum_{i=1}^{I} c_i > 0$.
- (ii) Using (i), show that the allocation (x, y_1, \ldots, y_I) , associated with a voluntary contributions equilibrium (*c*1, . . . , *cI*), cannot be Pareto Efficient.
- (c) Let (c_1, \ldots, c_I) be any voluntary contributions equilibrium, satisfying $(c_1, \ldots, c_I) \gg 0$, with associated allocation (x,y_1,\ldots,y_I) . Let (x',y'_1,\ldots,y'_I) be any Pareto Efficient Allocation satisfying $(x',y'_1,\ldots,y'_I) \gg$ 0. Can $x \ge x'$?

Problem 2 (2009 Aug III)**.** Consider an economy with two consumers, *A* and *B* and two assets, 1 and 2. There are three units of asset 1 and three units of asset 2 in the economy. The initial endowment of *A* at $t = 0$, is given by $(e_1^A, e_2^A) = (2, 1)$, and the initial endowment of *B* at $t = 0$ is $(e_1^B, e_2^B) = (1, 2)$. The price of asset 1 is q_1 , the price of asset 2 is $q_2 = 1$.

At $t = 1$, there are two possible states $S = {\omega_1, \omega_2}$, which occur with equal probability. The payoff matrix is given by:

$$
A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 1 \end{array} \right]
$$

Consumers are both expected utility maximizer with utility for state-contingent wealth *x* given by

$$
u^{A}(x) = 5 \ln x + 2
$$

$$
u^{B}(x) = 13x
$$

- (a) At *t* = 0, the two consumers choose portfolios of assets so as to maximize their expected utility of state-contingent consumption. State the optimization problems of the two consumers at $t = 0$.
- (a') Suppose $q_1 = \frac{5}{2}$. Draw the budget constraint of consumer *A*. What is the optimal choice of consumption in state *ω*² for this consumer? Derive the set of values of *q*¹ for which the budget sets of both consumers are bounded.
- (b) For the set of values of *q*¹ derived in part (a'), solve the optimization problems of both consumers. Set up the conditions for a market equilibrium and derive the equilibrium consumption and asset prices. Illustrate the equilibrium in an Edgeworth box.
- (c) Which of the two consumers is fully insured in equilibrium? Show that this consumers will be fully insured in equilibrium for any distribution of initial endowments such that: $e_1^A > 0$, $e_2^A > 0$, $e_1^B > 0$, $e_2^B > 0$, $e_1^A + e_1^B = 3$, $e_2^A + e_2^B = 3$, and $e_1^A + e_2^A \leq 3$.
- (d) New research has uncovered a third state, ω_3 which can occur at $t = 1$ with probability 0.2. States ω_1 and ω_2 are still considered to be equally probable. The payoff matrix is now

$$
A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 1 \\ 1 & 2 \end{array} \right]
$$

Is it possible to determine whether the equilibrium of this economy is Pareto-optimal without actually computing it?

(d') How would your answer to (d) change if there were a third asset and the payoff matrix, for some $r \in \mathbb{R}^1_+$, is now:

$$
A = \left[\begin{array}{rrr} 2 & 1 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & r \end{array} \right]
$$