ECON 6100	5/14/2021
Section	n 12
Lecturer: Larry Blume	TA: Abhi Ananth

Problem 1 (2011 June V). Consider an economy in which there is one public good (*x*) and one private good (*y*). There are *I* individuals, indexed i = 1, ..., I (with $I \ge 2$). Individual *i* has an endowment $a_i > 0$ of the private good, and none of the public good. The total endowment of the private good, $(a_1 + \cdots + a_I)$, is denoted by *a*. The public good can be produced from the private good, using a production function, $h : \mathbb{R}_+ \to \mathbb{R}_+$. Assume that *h* has the following form: h(z) = z for $z \in \mathbb{R}_+$.

Each individual's consumption set is \mathbb{R}^2_+ and consumer *i*'s preferences are represented by a utility function:

$$u_i(x, y_i) = f_i(x) + g_i(y_i)$$
 for $(x, y_i) \in \mathbb{R}^2_+$

 $f_{i}(ai) = f_{i}(a)$ $< g_{i}(ai)$

For each $i \in \{1, ..., I\}$, the functions f_i and g_i are assumed to satisfy:

ti, UMP (i)

(A1) $f_i(0) = 0$; f_i is increasing, strictly concave and continuously differentiable on \mathbb{R}_+ .

(A1) $g_i(0) = 0$; g_i is increasing, strictly concave and continuously differentiable on \mathbb{R}_+ .

(A1) $f_i(a) < g_i(a_i)$ and $f'_i(0) > g'_i(a_i)$ (a) Let $(x, y_1, \dots, y_I) \gg 0$ be a Pareto Efficient allocation. Show that: $\boxed{\sum_{i=1}^{I} \frac{f'_i(x)}{g'_i(y_i)} = 1} = \underbrace{\underset{i=1}{\overset{I}{\xrightarrow{}}} \theta_i}$

) Let
$$(c_1, \ldots, c_I)$$
 be a voluntary contributions equilibrium, with $c_i \in [0, a_i]$ for each $i \in \{1, \ldots, I\}$. The associated allocation (x, y_1, \ldots, y_I) is defined by:

$$x = \sum_{i=1}^{l} c_i$$
 and $y_i = a_i - c_i$ for all $i \in \{1, \dots, I\}$

- (i) Show that we must have $c_i < a_i$ for each $i \in \{1, ..., I\}$, and $\sum_{i=1}^{I} c_i > 0$.
- (ii) Using (i), show that the allocation $(x, y_1, ..., y_I)$, associated with a voluntary contributions equilibrium $(c_1, ..., c_I)$, cannot be Pareto Efficient.
- (c) Let (c_1, \ldots, c_I) be any voluntary contributions equilibrium, satisfying $(c_1, \ldots, c_I) \gg 0$, with associated allocation (x, y_1, \ldots, y_I) . Let (x', y'_1, \ldots, y'_I) be any Pareto Efficient Allocation satisfying $(x', y'_1, \ldots, y'_I) \gg 0$. Can $x \ge x'$?

Problem 2 (2009 Aug III). Consider an economy with two consumers, *A* and *B* and two assets, 1 and 2. There are three units of asset 1 and three units of asset 2 in the economy. The initial endowment of *A* at t = 0, is given by $(e_1^A, e_2^A) = (2, 1)$, and the initial endowment of *B* at t = 0 is $(e_1^B, e_2^B) = (1, 2)$. The price of asset 1 is q_1 , the price of asset 2 is $q_2 = 1$.

At t = 1, there are two possible states $S = \{\omega_1, \omega_2\}$, which occur with equal probability. The payoff matrix is given by:

$$A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 1 \end{array} \right]$$

Consumers are both expected utility maximizer with utility for state-contingent wealth x given by

$$u^{A}(x) = 5 \ln x + 2$$

$$u^{B}(x) = 13x$$

$$u^{B}(x) = 13x$$

$$= \sqrt{2} \ln(x) + \sqrt{2} \ln(x)$$

1

- (a) At t = 0, the two consumers choose portfolios of assets so as to maximize their expected utility of state-contingent consumption. State the optimization problems of the two consumers at t = 0.
- (a') Suppose $q_1 = \frac{5}{2}$. Draw the budget constraint of consumer *A*. What is the optimal choice of consumption in state ω_2 for this consumer? Derive the set of values of q_1 for which the budget sets of both consumers are been ded. consumers are bounded.
- (b) For the set of values of q_1 derived in part (a'), solve the optimization problems of both consumers. Set up the conditions for a market equilibrium and derive the equilibrium consumption and asset prices. ✓ Illustrate the equilibrium in an Edgeworth box.
- (c) Which of the two consumers is fully insured in equilibrium? Show that this consumers will be fully insured in equilibrium for any distribution of initial endowments such that: $e_1^A > 0$, $e_2^A > 0$, $e_1^B > 0$, $e_2^B > 0$, $e_1^A + e_1^B = 3$, $e_2^A + e_2^B = 3$, and $e_1^A + e_2^A \leq 3$. $e_2^{D} > 0, e_1^{A} + e_1^{B} = 3, e_2^{A} + e_2^{B} = 3, \text{ and } e_1^{A} + e_2^{A} \neq 3$ (d) New research has uncovered a third state, ω_3 which can occur at t = 1 with probability 0.2. States ω_1 and ω_2 are still considered to be equally probable. The payoff matrix is next.
- and ω_2 are still considered to be equally probable. The payoff matrix is now

Is it possible to determine whether the equilibrium of this economy is Pareto-optimal without actually computing it?

(d') How would your answer to (d) change if there were a third asset and the payoff matrix, for some $r \in \mathbb{R}^1_+$, is now: 0

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & r \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 1 \\ 1 & 2 & r \end{bmatrix}$$

$$A = 3$$

$$A = 3$$

	PO allocation \implies solve social planners problem if Pareto weight $\Theta_{1, \dots, \Theta_{I}} : Z_{i}, \Theta_{i} = 1$	
· · · · · · · · · · ·	$\max_{x, y} \sum_{i=0}^{i} \Theta_i \left[f_i(x) + g_i(y_i) \right]$	•
· · · · · · · · ·	st. $\chi + \Xi \gamma_i \leq \alpha (\lambda)$	
· · · · · · · · ·	$\begin{array}{c} \chi \neq 0 & (\mu) \\ \chi_i \geqslant 0 & (\mu_i) \end{array}$	•
<u>kt op</u> FC	$z_i \theta_i f_i'(x) - \lambda + \mu = 0$	•
 	$\forall i (\gamma i) \qquad \Theta i g_i'(\gamma i) - \lambda + \mu i = 0$	•
	Trug. coust	•
· · · · · · · · · ·	$(a-x-\overline{z}_{i},\gamma_{i})\lambda = D, \mu x = 0, \mu_{i}\gamma_{i} = 0,$	¥
	$\lambda_{1}\mu,\mu_{1} \geq 0$	•
We	know, $\gamma > 0 \implies \mu = 0, \forall i$	•
FOG :	$Z_{ii} \partial_i f_i(x) = \lambda = \partial_i g_i'(y_i) - \cdots + i$	•
· · · · · · · · ·	$Z_{11} = 1$ 3+5 = 3+5	
· · · · · · · · ·	$= \overline{Z_{1i} \oplus f_i(x)} = 1 \longrightarrow Take sum outside$	
	$\gamma g_{k} (\gamma _{k}) \rightarrow \Theta_{k} g_{k} (\gamma _{k}) , \forall k$	• •

 $\max_{G} f_i(Z_i G_j + G) + g_i(a_j - G)$ (b) UMP(i) $s \cdot t \cdot = 0 \leq c \cdot \leq 0 i$ KT opt: FOC: $f_i'\left(\sum_{\substack{j\neq i\\j\neq i}}^{l} g_j + G_i\right) - g_i'(a_i - G_i) - \lambda_i + \mu_i = 0$ $(1) \quad (1) \quad (1)$ \longrightarrow By CS $\rightarrow \mu = 0$; $\lambda i \ge 0$ $C_i = Q_i$ Suppose $f_i'\left(\frac{2i}{j+i}g_i+G_i\right) - g_i'(0) - \lambda_i^2 = 0$ FOC: $f_i'(\sum_{\substack{j\neq i}} c_j + c_i) \ge g_i'(o).$ $\frac{f_{i}(a)}{\sum_{j \neq i} G_{j \neq i}} = \frac{f_{i}(\sum_{j \neq i} G_{j \neq i})}{f_{i}(\sum_{j \neq i} G_{j \neq i})} = \frac{f_{i}(a)}{f_{i}(a)} = \frac{f_{$ $\sum_{\substack{j \neq i \\ j \neq i}} G_j + a_i = \sum_{\substack{j \neq i \\ j \neq i}} G_j + a_i$ Concarriby g(0) = 0Concavity f(0)=D $a = z_{a_i} \gg z_i^2 g + a_i$ $f(z) - f(0) > z \cdot f'(z)$.

 $\frac{f_i(a)}{g_i(ai)} > \frac{Z_i g_i + a_i}{J_{\neq i}}$ >1ai $f_i(a) > g_i(a_i)$ -> Contradiction $^{\rm M}$ $Z_1^{\rm t}$ C > 0 $^{\rm M}$ $POC \implies f_i'(o) - g_i'(a_i) + \mu_i = 0$ Contractictia >0. >0 $(i) \quad From \quad i: \quad G < Q_i \quad , \forall i \implies \lambda_i = 0$ some i: $G > 0 \implies \mathcal{M} = 0$ (atleast-1). For these i For others FOC: $f_i'(Z_{ij \neq i} g + G_i) - g_i'(G_i) = 0$ For others FOC: $f_i'(Z_{ij \neq i} g + G_i) - g_i'(G_i) + f_{ij} = 0$ $= \sum_{0 \leq f_{i}} (f_{i}) = 1 - \frac{\mu_{i}}{g_{i}'(q_{i})} \leq 1$ $= \frac{1}{g_{i}'(q_{i})} = \frac{1}{g_{i}'(q_{i})} \leq 1$

Ince: $Z_{i}^{t} = \frac{f_{i}^{t}(Z_{i}^{t}a)}{f_{i}(Z_{i}^{t}a)}$ Ц., + 27 $g_i'(\mathbf{a}_i - \mathbf{c}_i)$ 0<12.1 i:G=0 ≤ 1 >0 . (In PO = 1) Contradiction. (c) Shown above. ZI: fi >1 VE . . . 9.1 1 PO . <u>и</u>. $\frac{f_{i}'(x')}{g_{i}'(y_{i}')} = 1$ fi'(x)7. gi'(4:) + Concavity fi'(x) $\rightarrow \chi' 7 \chi$ f'(x')

(2) (a^{1}) (-2) (-2) $ln(\chi_1^A) + ln(\chi_1^B)$ ump(A) =Max χ^{A}, χ^{A} $q_1 Z_1^A + Z_2^A \leq 2q_1 + q_2 <$ s.f. $0 \leq \chi_1^A \leq 2Z_1^A + Z_2^A$ $0 \leq \chi_2^A \leq Z_2^A$ X# 20 $BC_{A}(Z^{A}) =$ $2.5 z_1^{4} + z_2^{4} \leq b; 2z_1^{4} + z_2^{4} \geq 0$ $z_2^{4} \geq 0$ }z*: when $q_1 = 2.5$ 9,2=1 Thus, the BC is unbounded! Optimal choice of $z_2 = \infty$ e e e everer et slope of brown $> \frac{-1}{2}$. 12/15 $\frac{-1}{2} \frac{1}{2} \frac{1$ $\int_{-\infty}^{\infty} \frac{q_{1}}{2} \int_{-\infty}^{\infty} \frac{q_{2}}{2} \int_{-\infty}^{\infty} \frac{q_{2}}{$ In read of bodd of both agents constraints

b) UMP A: max
$$\ln k^{\bullet} + \ln x^{\bullet} \iff affine branchond$$

s.t. $q_{1} \sum_{1}^{h} + \sum_{2}^{h} \leq 2q_{1} + 1 \implies 2^{\star} + 2q_{1} + 1 - q_{1} \sum_{2}^{h} + 2q_{1} + 1 - q_{1} \sum_{2}^{h} + 2q_{1} + 1 - q_{1} \sum_{2}^{h} = \frac{Q_{1} + 1}{Q - q_{1}} = \frac{Q_{2} + 1}{Q_{1} + 2} + \frac{Q_{2} + 1}{Q - q_{1}} = \frac{Q_{2} + 1}{Q_{1} + 2} + \frac{Q_{2} + 1}{Q_{1} + 2} = \frac{Q_{2} + 2}{Q_{1} + 2} = \frac{Q_{2} + 2}{Q_{2} +$