ECON 6100 5/14/2021

Section 12
Lecturer: Larry Blume TA: Abhi Ananth

Problem 1 (2011 June V). Consider an economy in which there is one public good (x) and one private good
(y). There are I individuals, indexed i = 1,...,I (with I > 2). Individual i has an endowment a; > 0 of
the private gogd, and none of the public good. The total endowment of the private good, (a1 + - - - + ay),
is denoted b The public good can be produced from the private good, using a production function,
h: Ry — Ry. Assume that /1 has the following form: h(z) = z for z € Ry.
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Each individual’s consumption set is R2 and consumer i’s preferences are represented by a utility func-
tion:

ui(%,yi) = fi(x_{gi(yi)/for (x,y:) € RY 4; '(m) {-{ZI@)
<0 ()

Foreachi € {1,...,1}, the functions f; and g; are assumed to satisfy:
(A1) f;(0) = 0; f; is increasing; strictly concave and continuously differentiable on R .

(A1) gi(0) = 0; g; is increasing,trictly concave and continuously differentiable on R ;..

Al) fi(i)2:< gi(a;) and f{(0) > g;(a;) ﬂ —s
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/?z:) Let (x,y1,.-.,y1) > 0be a Pareto Efficient allocation. Show that:
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(b) Let (c1,...,cr) be a voluntary contributiofis equilibrium, with ¢; € [0,4;] for eachi € {1,...,1}. The
associated allocation (x,y1,...,yr) is defined by:

I
x:Zci and@: aj—c; forall ie{1,...,1}

V[\K/ i=1 -
(i) Show that we must have ¢; < a; foreachi € {1,...,1}, anm

(i) Using (i), show that the allocation (x,y1, ..., y), associated with a voluntary contributions equi-
librium (cq, ..., cy), cannot be Pareto Efficient.
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(c) Let(cy,...,cr)beany voluntary contributions equilibrium, satisfying (ci, ..., cr) > 0, with associated
allocation (x,y1,...,yr). Let ('}, ...,y}) be any Pareto Efficient Allocation satisfying (x', v}, ...,y}) >

> x'?
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Problem 2 (2009 Aug III). Consider an economy with two consumers, A and B and two assets, 1 and 2.
There are three units of asset 1 and three units of asset 2 in the economy. The initial endowment of A at
t =0, is given by (ef,ef‘) = (2,1), and the initial endowment of B att = 0 is (e?,eg) = (1,2). The price of
asset 1 is g1, the price of asset 2is g = 1.

At t = 1, there are two possible states S = {w, w>}, which occur with equal probability. The payoff
matrix is given by:
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Consumers are both expected utility maximizer with utility for state-contingent wealth x given by
uA(x) = 5lnx 42 tw = VL(M(\@'(Y»QMQ’M)
L)KS\'/‘)L\'\J\{:V - ,)0‘ (\Cv

(@) Att = 0, the two consumers choose portfolios of assets so as to maximize their expected utility of
state-contingent consumption. State the optimization problems of the two consumers at t = 0.

(@") Suppose g1 = 3. Draw the budget constraint of consumer A. What is the optimal choice of consump-/
fon in state wy for this consumer? Derive the set of values of q; for which the budget sets of both
consumers are bounded.

(b)Wf values of g1 derived in part (a’), solve the optimization problems of both consumers. Set

the conditions for a market equilibrium and derive the equilibrium consumption and asset prices.
/ Mustrate the equilibrium in an Edgeworth box.

(c) Which of the two consumers is fully insured in equilibrium? Show that this consumers will be fully
insured i 1r1 equlhbrlum for any distribution of 1r1%1a1 endowments such that: ef! > 0, ¢4 > 0,el >0,

ez>0 el +el—3 ez—i—ez—B anclel +€2 - Q()az,. a-l—auéﬁ'
\___/——\A
b = 2~a.q§va,,,

(d) New research has uncovered a third state, w3 which can occur at t = 1 with probability 0.2. States w-
and wy are stlll considered to be equally probable. The payoff matrix is now

W= Qb\"‘{-vw\ <O )-\ )O KM-}'\ [A) =4 -

lg\ = 2.
Is it possible to determine whether the equilibriu is economy is Pareto-optimal without actually
computing it?

(d’) How would your answer to (d) change if there were a third asset and the payoff matrix, for some
re R} +, is now: _—
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