ECON 6100 02/19/2021

Section 1

Lecturer: Larry Blume TA: Abhi Ananth

* These notes develop Fikri Pitsuwan's notes from 2017.

Logistics

- OH: Thus 4-6 pm
- Material available at: https://abhiananthecon.github.io/teaching/
- Same link for office hours and sections
- Please email me with subject header 6100 to be a part of the mailing list
- Thu 6pm deadline for topic suggestions
- Questions?

Today we will look at:

- 1. Farka's lemma
- 2. Canonical and standard form
- 3. Vertex theorem

1 Review

Let's start with Farka's lemma. It states that for any $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, exactly one of the following **will hold**:

- There is some $x \in \mathbb{R}^n$ satisfying $x \ge 0$ and $Ax = b$.
- There is some $y \in \mathbb{R}^m$ satisfying $yA \geq 0$ and $yb < 0$.

Farka's Lemma: $\frac{\alpha_1}{\alpha_1}$ $\overrightarrow{a_1}$ suppose A- ⁼ $\begin{bmatrix} 1 & 2 & a_1 \\ a & 1 & a_2 \end{bmatrix}$ b = x_2 $A = \begin{bmatrix} 1 & 2 & a_1 \\ 2 & 1 & a_2 \end{bmatrix}$ $\begin{bmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \end{bmatrix}$ ^a - \vec{a}
 $A \vec{x}, \vec{x} \ge 0$ $1 + \sqrt{7a^2}$.
O ' $\overline{\mathbf{1}}$ N_i $\overline{1}$ \overline{b} lies in purple area, $A\overline{x} = b$, $\overline{x} \geq \overline{0}$ has a solution . in purple area, $A\overline{x} = b$, \overline{x}
Eg $\overline{b} = (1,1) \longrightarrow x^*(\overline{b}) = (\frac{3}{5}, \frac{1}{5})$ $e^{i\theta}$ de no solution . $e^{i\theta}$ $\vec{b} = (3,1)$. Farka's lemma says that when $\{\vec{x}\ge0: A\vec{x}=$ $= b$) $= \phi$, then $\{\vec{y}: \vec{y} \land \geqslant \vec{0} \}, \vec{y} \text{ b} \leqslant 0 \} \neq \phi.$ α_1 = $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$; $\begin{bmatrix} \alpha_2 & \alpha_3 \end{bmatrix}$ ya_k 70 , yah>^O $-\frac{1}{2}$ π $+$ \sqrt{a} \rightarrow \sqrt{b} $\overline{}$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ a_1 : 1st column vector in A .

Why it matters?

- Neat application of the separating hyperplane theorem
- Easy to verify criterion for feasibility of a linear program

A linear program can be written in *canonical form* as

$$
v_p(b) = \max c \cdot x
$$

s.t. $Ax \le b$
 $x \ge 0$

where *c* $\in \mathbb{R}^n$, *x* $\in \mathbb{R}^n$, *A* is an *m* × *n* matrix, *b* $\in \mathbb{R}^m$. Any linear program can also be written in standard form as
 $v_p(b) = \max c \cdot x$

s. t. $Ax = b$ written in *standard form* as

$$
v_p(b) = \max c \cdot x
$$

s.t. $Ax = b$
 $x \ge 0$

Given an inequality constraint $2x_1 + 3x_2 \leq 5$ and $x_1, x_2 \geq 0$, we can introduce a slack variable $z_1 \geq 0$, so that the constraint becomes $2x_1 + 3x_2 + z_1 = 5$. Given an equality constraint $x_1 + 2x_2 = 3$, we can express this as $x_1 + 2x_2 \le 3$ and $-x_1 - 2x_2 \le -3$. A linear program with no non-negativity constraint can be dealt with by expressing $x = y - z$ with $y \geq 0$ and $z \geq 0$. Why it matters?

• Neat application of the separating hyperplane theorem

• Easy to verify criterion for feasibility of a linear program

• Easy to verify criterion for feasibility of a linear program

• Easy to verify cr

Here are some important definitions in linear programming.

,

Definition 1. Any $x \in \mathbb{R}^n$ is called a *solution*.

Definition 2. For a linear program in canonical form, $C = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ is called the *constraint set* or the *feasible set*. Any $x \in C$ is called a *feasible solution*.

Definition 3. A vector *x* that actually solves the linear program, i.e., $x \in C$ and $c \cdot x \ge c \cdot x'$ for all $x' \in C$ is called an *optimal solution*.

Definition 4. A vector $x \in C$ is a vertex of C if and only if there is no $y \neq 0$ such that $x + y$ and $x - y$ are both in *C*.

Theorem (Vertex Theorem)**.** *For a linear program in standard form with feasible solutions, a vertex exists and if* $v_p(b) < \infty$ *and* $x \in C$, then there is a vertex x' such that $c \cdot x' \geq c \cdot x$.

Notes

A good reference on linear programming is *Introduction to Linear Optimization* by Bertsimas and Tsitsiklis.

Problems $\overline{2}$

Problem 1. Consider the following linear program

$$
\max 2x_1 + x_2
$$

s. t.
$$
x_1 + x_2 \le 1
$$

$$
x_1 \ge 0, x_2 \ge 0
$$

- (a) Express the linear program in canonical form and draw the constraint set and solve the problem graphically.
- (b) Express the linear program in standard form and draw the constraint set.
- (c) Verify that the vertex theorem applies. Use the vertex theorem to find an optimal solution of the linear program.

 $2x_1 + x_2 + y \cdot 0$ max $z = (x_1x_2y)$ $g.\xi$. $x_1 + x_2 + y = 1$ $x_1 \ge 0$, $x_2 \ge 0$, $y \ge 0$ $A = [1, 1, 1]$, $b = 1$ $C = (2, 1, 0)$ $Y \left(0,0,1 \right) V = 0$ $5\left(0.25, 0.25, 0.5\right)$ $\begin{array}{c}\n\sqrt{2} & \Delta \\
\hline\n\end{array}$ \Rightarrow (0.1,0.9,0) > Not vertex $(0.2, 0.8, 0)$ $\vec{C} = (2, 1, 1)$ $\frac{1}{(1,0,0)}$ $(0, 1, 0)$ $V = 1 \cdot 1$ x_1

$$
2\pi_{1} + \gamma_{2} = 2(\gamma_{1} - z_{1}) + (\gamma_{2} - z_{2})
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{1} - 2z_{1} + \gamma_{2} - z_{2}
$$
\n
$$
= 2\gamma_{2} + z_{2} - z_{2}
$$
\n
$$
= 2\gamma_{3} + z_{3} - z_{1}
$$
\n
$$
= 2\gamma_{4} + z_{2} - z_{3} - z_{1}
$$
\n
$$
= 2\gamma_{5} + z_{4} - z_{5}
$$
\n
$$
= 2\gamma_{6} + z_{6}
$$
\n
$$
= 2\gamma_{7} - z_{7} - z_{8}
$$
\n
$$
= 2\gamma_{8} + z_{9} - z_{1}
$$
\n
$$
= 2\gamma_{1} + z_{2} - z_{1}
$$
\n
$$
= 2\gamma_{1} + z_{2} - z_{1}
$$
\n
$$
= 2\gamma_{1} + z_{2} + z_{3}
$$
\n
$$
= 2\gamma_{1} + z_{4} + z_{5}
$$
\n
$$
= 2\gamma_{1} + z_{6}
$$
\n
$$
= 2\gamma_{1} + z_{1} + z_{2}
$$
\n
$$
= 2\gamma_{1} + z_{2} + z_{3}
$$
\n
$$
= 2\gamma_{1} + z_{4}
$$
\n
$$
= 2\gamma_{1} + z_{4}
$$
\n
$$
= 2\gamma_{1} + z_{2} + z_{3}
$$
\n
$$
= 2\gamma_{1} + z_{4}
$$
\n
$$
= 2\gamma_{1} + z_{2} + z_{3}
$$
\n
$$
= 2\gamma_{1} + z
$$

 $\chi_1 + \chi_2 \leq 1$ E Ineq. $x_1 - 2x_2 \leq 1$ F_{max} λ_{1} , $\lambda_{2} \geq 0$ G Lag. Cares: $\lambda_1 = 0$ $\xrightarrow{A} \lambda_2 = 2$ \Rightarrow $\xrightarrow{D} \alpha_1 - 2\alpha_2 = 1$ $\bigvee_{B} \overrightarrow{B} \quad \lambda_{2} = -\frac{1}{2} \implies \text{virdales } G$ Ruled out $\lambda_z = 0 \implies \lambda_1 = 2 \quad \lambda_2 = 2$
 $\lambda_1 = 1 \quad \lambda_2 = 2$ -> violates Ruled out constraints bind: In any optima, $\frac{1}{2}$ $2x_1 + 2x_1 = 1$
 $x_1 - 2x_2 = 1$ $3x_1 = 3$ > $x_1^2 = 1$, $x_2^2 = 1.1$ (c) $max_{x} c.x s+ Ax=b; x\ge0$

Problem 3. Consider a utility maximization problem with $u(x) = \sum_{i=1}^{n} \alpha_i x_i$, where $\alpha_i > 0$ for all i .

- (a) Express the problem as a linear program in canonical form. What is the feasible set? What are c , A , and b ?
- (b) Solve the UMP for $n = 2$ using the Kuhn-Tucker formulation with $\alpha_1 = 3$, $\alpha_2 = 2$, $p_1 = 3$, $p_2 = 1$, $w = 3$. Verify your solution graphically.

(a) max
$$
\alpha_1 \alpha_1 + ... + \alpha_n \alpha_n
$$

\n $\alpha_1 + ... + \alpha_n \alpha_n$
\n $\alpha_2 + ... + \alpha_n \alpha_n$
\n $\alpha_3 + ... + \alpha_n \alpha_n$
\n $\alpha_4 + ... + \alpha_n \alpha_n$
\n(b) max $3\alpha_1 + 2\alpha_2$
\n $\alpha_1 + ... + \alpha_n \alpha_n$
\n $\alpha_1 + ... + \alpha_n \alpha_n$
\n $\alpha_1 + ... + \alpha_n \alpha_n$
\n $\alpha_2 + ... + \alpha_n \alpha_n$
\n $\alpha_3 + ... + \alpha_n \alpha_n$
\n $\alpha_4 + ... + \alpha_n \alpha_n$
\n $\alpha_5 + ... + \alpha_n \alpha_n$
\n $\alpha_6 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_7 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_8 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_9 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_1 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_1 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_1 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_2 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_3 + ... + \alpha_n = 0$
\n $\alpha_4 + ... + \alpha_n \alpha_n = 0$
\n $\alpha_5 + ... + \alpha_n = 0$

 \mathbb{Z} ueg $+$ \mathbb{Z} Case $T = \begin{cases} \lambda_1 = 0 & \Rightarrow \lambda_2 = 0 \\ \downarrow \Rightarrow \text{ Rucleo out} \end{cases}$ -3 , $\lambda_3 = -2$ $\lambda_2 = 0$ $1, \lambda_3 = -1$ < 0 $\Rightarrow \lambda =$ Constant Cont $\lambda_3=0 \implies \lambda_1=\sqrt{2}, \lambda_2=\sqrt{3}$ $\Rightarrow \; k \neq 0 \; \Rightarrow \; x_1 = 0 \; .$ $3 \lambda_1 \neq 0 \Rightarrow 3 \cancel{x_1} + \cancel{x_2} = 3$ $3\% = 3$ x_{1} \int 0 1 $= (3,2)$ \mathbf{x}_1