

ECON 6100 02/26/2021

Section 2

Lecturer: Larry Blume TA: Abhi Ananth

* These notes develop Fikri Pitsuwan's notes from 2017.

1 Review

The feasible set of a linear program in standard form is $C = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$. For $x \in \mathbb{R}^n$, define $supp(x) = \{j : x_j > 0\}$, the set of coordinates such that *x* has strictly positive component.

Definition 1. A feasible solution $x \in C$ is *basic* if the set $\{A^j : j \in \text{supp}(x)\}$ is linearly independent.

Note that since *A* is $m \times n$ and without loss of generality we can assume that *A* has full row rank, i.e., $rank(A) = m$, for $x \in C$ to be basic, *x* needs to pick out *m* linearly independent columns of *A*.

Theorem. $x \in C$ *is basic if and only if it is a vertex.*

Example 1. Consider

 $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \end{bmatrix}$

For $x = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}^T$, $x \in C$ and $supp(x) = \{1,2\}$. Since $\{A^1, A^2\}$ is not linearly independent, x is not basic and thus not a vertex. The basic feasible solutions are $x = \left[\begin{array}{cc} 1 & 0\end{array}\right]^T$ and $x = \left[\begin{array}{cc} 0 & 1\end{array}\right]^T$.

Theorem (FTLP)**.** *If a linear program in standard form has an optimal solution, then it has a basic optimal solution.*

Given a linear program in canonical form

$$
v_p(b) = \max c \cdot x
$$

s.t. $Ax \le b$
 $x \ge 0$

The dual linear program is

$$
v_D(c) = \min y \cdot b
$$

s.t. $yA \ge c$
 $y \ge 0$

A very useful theorem from the study of duality is the complementary slackness theorem.

Theorem. If x^* and y^* are feasible for the primal and dual, then they are optimal if and only if $y^*(b - b)$ Ax^*) = 0 *and* $(y^*A - c)x^* = 0$

Example 2. Consider the linear program from section 1

$$
\max 2x_1 + x_2
$$

s.t. $x_1 + x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$

The dual linear program is

$$
\min y_1
$$

s.t. $y_1 \ge 2$ $y_1 \ge 1$
 $y_1 \ge 0$

Clearly, the solution to the dual is $y_1^* = 2$, so an optimal solution of the primal must satisfy $x_1^* + x_2^* = 1$. Now, we also have $(y_1^* - 2)x_1^* + (y_1^* - 1)x_2^* = 0$, which implies that $x_1^* = 1$ and $x_2^* = 0.$

2 Problems

Problem 1. Consider the (primal) linear program

$$
\max x_1 + x_2
$$

s.t. $x_1 + 2x_2 \le 6$
 $x_1 - x_2 \le 3$
 $x_1 \ge 0, x_2 \ge 0$

- (a) Draw the constraint set and solve graphically.
- (b) Write the problem in standard form.
- (c) State and solve the dual problem.
- (d) Verify that the values coincide and that the complementary slackness conditions hold.

Problem 2. Consider the following linear program

$$
v_P(b) = \max x_1 + 2x_2
$$

s.t. $x_1 + x_2 \le 4$
 $x_1 + 3x_2 \le b$
 $x_1 \ge 0, x_2 \ge 0$

- (a) Draw the constraint set.
- (b) Solve the problem and plot $v_p(b)$.
- (c) State and solve the dual problem. How does the solution of the dual problem depend on *b*?
- (d) Let $b = 6$, verify the complementary slackness conditions.

Problem 3. Prove Gordon's Lemma: Let $A \in \mathbb{R}^{n \times m}$, then exactly one of the two alternatives is true:

- 1. $\exists x \in \mathbb{R}^n, x \neq 0, x \geq 0$ such that $Ax = 0$
- 2. $\exists y \in \mathbb{R}^m$ such that $yA >> 0$