ECON 6100 3/26/2021

Section 6

Lecturer: Larry Blume TA: Abhi Ananth

1 Review

An equilibrium can be though to be comprised of three components:

- 1. What gets consumed?
- 2. What gets produced?
	- (a) **What goods are produced and how much?**
	- (b) What factors are used and how much?
- 3. What prices make this exchange work?

1.1 Two sector models

The economy is endowed with two production processes (sectors) f_A and f_B that produce goods *A* and *B* respectively. It is a two sector model because each sector produces a unique good.

We typically assume there are two factors of production, capital (*k*) and labor (*l*) that move freely between the two sectors.

The production functions are assumed to satisfy:

- A.1 The production function f_j is twice continuously differentiable with $f'_j > 0$ and $f''_j < 0$. \bigvee
- A.2 The production function satisfies Inada condition (this is important because ... *who has the time to check for corner solutions?*)

$$
\lim_{k \to 0} \frac{\partial f_j(k, l)}{\partial k} = \lim_{l \to 0} \frac{\partial f_j(k, l)}{\partial l} = +\infty
$$
\n(1)

A.3 f_j is homogenous of degree 1 (constant returns to scale).

Min: code of prod 5 units of
$$
j = 5x
$$
 min. cost of 1 unit of j.

1.2 HOV model

Consider a small open economy trading goods *A* and *B* in a large world market. Consequently, prices p_A and p_B are determined independently of production here. The economy is endowed with endowments of factor inputs *K* and *L*.

1.2.1 Producer feasibility and efficiency

The PPS can be written as:

• **coer feasibility and efficiency**

\nbe written as:

\n
$$
PPS = \{(y_A, y_B) : y_j \le f_j(k_j, l_j) \,\forall j \in \{A, B\}, k_A + k_B \le K, l_A + l_B \le L\}
$$
\n(2)

The production possibility frontier (PPF) are the set of all (y_A, y_B) pairs that simultaneously solves:

$$
\phi(y_B) = \max f_A(k_A, l_A)
$$
\ns.t. $f_{\mathbf{B}}(k_{\mathbf{B}}, l_{\mathbf{B}}) \leq \mathbf{y}_B$
\n $k_A + k_B \leq K$
\n $l_A + l_B \leq L$

and

$$
\phi(y_A) = \max_{f_B(k_B, l_B)} f_B(k_B, l_B)
$$
\n
$$
\text{s.t. } f_A(k_B, l_B) \leq y_A
$$
\n
$$
k_A + k_B \leq K
$$
\n
$$
l_A + l_B \leq L
$$
\n
$$
\text{On this, it is the value of the above}
$$
\n
$$
y_B
$$
\n
$$
\text{On this, it is the result of the above}
$$

I can make .

1.2.2 Equilibrium
3.2.2 Equilibrium
2.2 Equilibrium as
$$
(w^*, r^*, (l_j^*, k_j^*, y_j^*)_{j \in \{A, B\}})
$$
 such that:

 $(\mathcal{U}_{j}^{*} , k_{j}^{*}, y_{j}^{*})_{j \in \{A,B\}}$ maximizes profit:

$$
l_j^*, k_j^*, y_j^* = \arg \max p_j y_j - r_k^* - \bar{w}_j^* \, \text{s.t.} \, y_j \le f(k_i, l_i) \tag{3}
$$

2.
$$
\sum_j (l_j^*, k_j^*) = (L, K)
$$

We know from lecture that there are two classes of equilibria here:

• Diversified

 $\bullet\,$ Specialized

But first, recall that Shepard's lemma gives us the factor use as the gradient of the unit cost functions:

$$
l_j = \frac{\partial c_j(w, r)}{\partial w}, \ k_j = \frac{\partial c_j(w, r)}{\partial r}
$$
 (4)

Cost function:

\n
$$
C_{j}(\omega, \theta, \theta, \varphi) = \min_{\begin{array}{l} \theta, k \\ \theta, \theta, \theta \end{array}} \omega \begin{array}{l} \omega + \theta, k \\ \omega + \theta, k \end{array}
$$
\nHint: output cost function:

\n
$$
C_{j}(\omega, \theta, \varphi) = C_{j}(\omega, \theta, 1) = 0
$$
\nHint: output cost function:

\n
$$
C_{j}(\omega, \theta, 1) = C_{j}(\omega, \theta, 1)
$$
\nBy HOD 1 of f_{j} :

\n
$$
C_{j}(\omega, \theta, \psi) = \psi \begin{array}{l} \omega_{j}(\omega, \theta, 1) \\ \omega_{j}(\omega, \theta, 1) \end{array}
$$
\nAny eqbun satisfies:

\n
$$
(f) \gamma_{k} (R - \kappa_{k}(\omega, \theta)) \geq 0 \quad \text{if } R = G_{k} \stackrel{\text{d}}{=} P_{k} = G_{k}
$$
\n
$$
= \sum_{k=0}^{n} \gamma_{k} \begin{array}{l} \omega_{k}(\omega, \theta, 1) \end{array}
$$
\n
$$
= \sum_{k=0}^{n} \frac{1}{\lambda} \begin{array}{l} \omega_{k}(\omega, \theta, 1) \end{array}
$$
\nwhich is the sum of f_{k} .

\nIntegrals:

\n
$$
C_{j}(\omega, \theta, 1) = \sum_{k=0}^{n} \frac{1}{\lambda} \begin{array}{l} \omega_{k}(\omega, \theta, 1) \end{array}
$$
\n
$$
= \sum_{k=0}^{n} \frac{1}{\lambda} \begin{array}{l} \omega_{k}(\omega, \theta, 1) \end{array}
$$
\n
$$
= \sum_{k=0}^{n} \frac{1}{\lambda} \begin{array}{l} \omega_{k}(\omega, \theta, 1) \end{array}
$$

There are ² types of specialized eglom . $\mathcal{L}_{A}(\omega, \lambda) = p_{A}$ but $\mathcal{L}_{B}(\omega, \lambda)$) $> p_{B}$. \Rightarrow γ_B = $=$ \bigcirc Note that even when ya>0 , $\mathcal{R}_\mathsf{A} = \mathbb{O}$. ^② The interesting kind : h n ^A B t A C_A $(\omega, s) = \rho_A$ β $C_B = \beta_B$ $\Rightarrow w$ $*$ These are the unit isoquant lines for A, B. By Shepard's lemma , we know : $W_{\text{max}} = \frac{1}{2} \left\{ \begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{array} \right.$ v^{2p} $(x_1(w, x)) = p_A$ and $x_B(w, x) = p_B$ happens where ? → Notice that this determines w 't $,$ ን * :

 $\frac{k}{\sqrt{k}}$ $1 = L_1, K_1$ $2 = L_{22} K_2$ $3 = L_{3} K_{3}$ $C_A = Pa$ $\vec{c} = \alpha \cdot \vec{B}$ $-B$ $C_B = P_B$ ラい. (1) \exists γ_{A} , γ_{B} $>$ 0 y_A , y_B
 y_A $\nabla c_A + y_B$ $\nabla c_B = (L_1, K_1)$ \int Egbm (2) \exists $y_{A} > 0$, $y_{B} = 0$:
 $y_{A} \nabla c_{A} = (L_{2}, K_{2})$ \int \Rightarrow Boundary $\oint \psi_{A_1} \psi_{B} > 0$ $\psi_{A_1} \nabla_{C_{A_1}} + \psi_{B_1} \nabla_{C_{B_2}} = (L_3, k_3).$ $\left(3\right)$ Clearly $\gamma^* = 0$. But $\psi_{\mathfrak{b}}^* > 0$ as ω^*, x^* such that $c_{\mathfrak{h}}(\omega^*, x^*) = p_{\mathfrak{h}}$ Cannot satisfy $\gamma_A * \nabla_{C_A} * = (L_3, K_3).$ \mathcal{T} $\frac{1}{20}$, louver $10^x,3^*$ until $CA(N^*)^{x*}$ < PA
 \Rightarrow A earme positive profit F.

a Sueng Wha: This was incossed h B $\sqrt{2}$ $\mathbf k$ 7.1 23 JCB $Ca = Pa$ eglom C_{β} \overline{B} $=$ β \mathcal{P}

2 Problems

Problem 1. Suppose in a small open economy, world output prices for good 1 and 2 are *p* and 1, respectively. The production functions are:

- (b) Compute *[∂]^w [∂]^p* when both goods are produced.
- (c) Suppose $p = 1$. If the endowment of capital and labor are both 100, do both firms operate?
- (c) Suppose $p = 1$. If the endowment of capital and labor are both 100, do both firms operate?
(d) Suppose $p = 1$. If the endowment of capital and labor are 100 and 400 respectively, do both firms operate? else not

Problem 2. A small open economy produces two goods, *A* and *B*, using two inputs, capital (*k*) and labor (*l*). The production function for the two goods are:

$$
f_A(l_A, k_A) = \min\{\alpha_A l_A, \beta_A k_A\}
$$

$$
f_B(l_B, k_B) = \min\{\alpha_B l_B, \beta_B k_B\}
$$

Let p_A and p_B be the world output prices of good A and B respectively. Also, let the country's stock of capital and labor be $(K, L) \gg 0$. Denote the prices of capital and labor by *r* and *w* respectively. Suppose $K/L \in (1/4, 1/2)$.

- (a) Let $p_A = \alpha_A = \alpha_B = 1$ and $\beta_A = 4$, $\beta_B = 2$. Suppose we are in the situation where both *A* and *B* are produced in positive quantities. Solve for the competitive equilibrium when both wage rate and rental rate are positive.
- (b) Suppose the economy specified above is in a diversified competitive equilibrium with *w*,*r >* 0. What can you say regarding the factor intensity of industry *A* compared to industry *B*? What is the effect of an increase in p_B on the equilibrium input prices?

(a)
$$
C_A(\omega,3) = \omega + \frac{\eta}{4}
$$
 ; $\frac{\sqrt{4}}{(\omega,3)} = \frac{1}{4}$
\n $C_B(\omega,3) = \omega + \frac{\eta}{2}$; $\sqrt{26} = \frac{1}{4}$
\n $C_A = \beta_A$; $C_B = \beta_B = ?$
\n $\omega + \frac{\eta}{4} = 1$; $\omega + \frac{\eta}{2} = \beta_B$ $\Rightarrow \omega^* = 2 - \beta_B$; $\omega^* = 4(\beta_B - 1)$
\n $\frac{\beta_A}{\beta_B} = \frac{\partial G_A(\omega,3)}{\partial \omega_B} = 4 \frac{\sqrt{3}}{4} = \frac{\partial G_A(\partial \omega)}{\partial \beta_B} = 2 = \frac{\ell_B}{\gamma_B}$

1 Notice that the egbon is charactorized in
torms of unit cost function, so let's find it: $LC(\mathcal{H},\omega) = \min_{k,l} \omega l + g k$ $8t$ k^{α} $l^{1-\alpha}$ \geqslant 1 , $k, l \geqslant$ $2 = w^{\theta} + 2k + \lambda [1 - k^{\alpha} \ell^{1-\alpha}]$ FOC(E): $A = \lambda \alpha k^{\alpha+1}l^{1-\alpha}$
FOC(C): $w = \lambda (1-\alpha) k^{\alpha}l^{-\alpha}$ $+$ Const: $k^{\alpha}l^{1-\alpha} = 1$. $G_A = \beta_A$ \rightarrow β^x, ω^x $LC(\mathcal{A},\omega) = (\frac{\mathcal{A}}{\alpha})^{\alpha} (\omega)^{1-\alpha}$ $d = 1/2$ S_{θ} , $c_{1}(\theta_{1},\omega) = 2\sqrt{n\omega}$ $x' = \frac{3}{4}$ $C_2(8, w) = \frac{4}{3^{34}} 9^{34} w^{14}$ Recall (ω, λ) are completely characterized by
 $P_1 = c_1(\omega, \lambda)$ and $P_2 = c_2(\omega, \lambda)$ $p = 2 \log$ $1 = \frac{4}{3^{34}}$ 91 3/4 w^{14}

 $9^* = (3/4)^{3/2} = \frac{1}{9}$ $W^* = \left(\frac{4}{27}\right)^{1/2} p^3 \iff$ $\Rightarrow \frac{\partial w^*}{\partial p} = \frac{1}{27} \cdot \frac{4}{27} \cdot \frac{3p^2}{2}$ [C] To answer this, I must compute $\nabla c_1(8^x, \omega^x), \nabla c_2(9^x, \omega^x).$ After careful algebra: $\nabla_{C_1} = \begin{bmatrix} \sqrt{27}/4 \\ 4/\sqrt{27} \end{bmatrix}$ $\nabla c_2 = \int 3^{-3/4} \left(\frac{27}{16}\right)^{3/4}$ $\begin{bmatrix} 3 & 4 & (16/27) \end{bmatrix}$

 $\mathsf K$. (100,100) $(400, 100)$ \overline{r} \bigcirc $\frac{1}{\sqrt{2\pi}}\sum_{i=1}^{n}$ $16/27$ $\overline{\mathbf{z}}$ $\frac{1}{2}$ $\overline{1}$ $\begin{bmatrix} 100 \\ 00 \end{bmatrix}$ $\frac{v_{A}}{20}$ + v_{B} $\frac{1}{20}$ =

 min $w \ell + 9k$ $\mathcal{L}(\omega, \beta) =$ $\left[\begin{bmatrix} 2 \end{bmatrix}\right]$ mu $\{x \in \mathbb{R} \}$ ≥ 1 $9.1.$ \Leftrightarrow $\alpha_{l} \geq 1$ 跟Z1 $\lambda = \omega \ell + \lambda k + \lambda_1 (1-\alpha \ell) + \lambda_2 (1-\beta k).$ FOC $(l):$ $w = \lambda_i \alpha$ $(k) = \lambda_z \beta$ Consts: $l^* = \frac{1}{\alpha}$; $k^* = \frac{1}{\beta}$ $LC(\omega, \lambda) = \omega l^* + \lambda k^*$ $= \frac{w}{\alpha} + \frac{y}{\beta}$ In a diversified eabon if p. 1, (b) Stoples - Samuelson: i's intensive in has its price? the imput that A l other $\sqrt{ }$ (B je sulensive in k) g_{1} 1 $M\neq 0$