Section 6

Lecturer: Larry Blume

TA: Abhi Ananth

1 Review

An equilibrium can be though to be comprised of three components:

- 1. What gets consumed?
- 2. What gets produced?
 - (a) What goods are produced and how much?
 - (b) What factors are used and how much?
- 3. What prices make this exchange work?

1.1 Two sector models

The economy is endowed with two production processes (sectors) f_A and f_B that produce goods A and B respectively. It is a two sector model because each sector produces a unique good.

We typically assume there are two factors of production, capital (k) and labor (l) that move freely between the two sectors.

The production functions are assumed to satisfy:

A.1 The production function f_j is twice continuously differentiable with $f'_j > 0$ and $f''_j < 0$.

A.2 The production function satisfies Inada condition (this is important because ... who has the time to check for corner solutions?)

$$\lim_{k \to 0} \frac{\partial f_j(k, l)}{\partial k} = \lim_{l \to 0} \frac{\partial f_j(k, l)}{\partial l} = +\infty \tag{1}$$

A.3 f_i is homogenous of degree 1 (constant returns to scale).

Min cost of prod 5 units of j = 5x min cost of 1 unit of j.

1.2 **HOV** model

Consider a small open economy trading goods A and B in a large world market. Consequently, prices p_A and p_B are determined independently of production here. The economy is endowed with endowments of factor inputs *K* and *L*.

1.2.1 Producer feasibility and efficiency

The PPS can be written as:

$$PPS = \{ (y_A, y_B) : y_j \le f_j(k_j, l_j) \ \forall j \in \{A, B\}, k_A + k_B \le K, l_A + l_B \le L \}$$
 (2)

The production possibility frontier (PPF) are the set of all (y_A, y_B) pairs that simultaneously solves:

$$\phi(y_B) = \max f_A(k_A, l_A)$$
s. t. $f_B(k_B, l_B) = y_B$

$$k_A + k_B \le K$$

$$l_A + l_B \le L$$

and

$$\phi(y_A) = \max f_B(k_B, l_B)$$
s. t. $f_A(k_A, l_A) = y_A$

$$k_A + k_B \le K$$

$$l_A + l_B < L$$

 $\phi(y_A) = \max f_B(k_B, l_B)$ s.t. $f_A(k_B, l_A) = y_A$ $k_A + k_B \le K$ $l_A + l_B \le L$ V_A , what's the maxamount of V_B of can make.

Equilibrium 1.2.2

1.2.2 Equilibrium $(w^*, r^*, (l_j^*, k_j^*, y_j^*)_{j \in \{A, B\}})$ such that:

1. $(l_i^*, k_i^*, y_i^*)_{i \in \{A,B\}}$ maximizes profit:

$$l_j^*, k_j^*, y_j^* = \arg\max p_j y_j - r^* k_j - w^* l_j \text{ s. t. } y_j \le f(k_i, l_i)$$
 (3)

2. $\sum_{i} (l_i^*, k_i^*) = (L, K)$

We know from lecture that there are two classes of equilibria here:

Diversified

Specialized

But first, recall that Shepard's lemma gives us the factor use as the gradient of the unit cost functions:

$$l_j = \frac{\partial c_j(w,r)}{\partial w}, \ k_j = \frac{\partial c_j(w,r)}{\partial r}$$
 (4)

Cost function

$$C_j(w, 9, 9) = min \quad wl + 9k$$

tother units to be produce S.t. $f_j(k, l) \ge 9$
 $k, l \ge 0$

unit output cost function:

$$\mathcal{L}_{j}(\omega, \mathfrak{R}) = \mathcal{C}_{j}(\omega, \mathfrak{R}, 1)$$

By HOD 1 of f_i : $C_i(w, x, y) = y c_i(w, x)$.

Any eglom satisfies: " should be' = by complementary slackness

Any egom satisfies: "Should be slackness when
$$y_A, y_B > 0$$
?

(A) $Y_A \left(P_A - L_A(\omega, 9) \right) > 0$
 $P_A = G_A$
 $P_B = G_B$

The should be slackness when $Y_A, Y_B > 0$?

 $P_A = G_A$
 $P_B = G_B$

(+) $Y_A \left[\frac{\partial C_A(\omega, \pi)}{\partial M} + Y_B \left[\frac{\partial C_B(\omega, \pi)}{\partial M} \right] \right] = \left[\frac{1}{2} \frac{1}{$

There are 2 types of specialized eglown. $\mathcal{A} \Rightarrow \mathcal{A} \mathcal{A}_{\mathcal{B}} = \mathcal{O}_{\mathcal{A}} \mathcal{A}_{\mathcal{B}}$ Note that even when $y_A > 0$, $T_A = 0$. 2) The interesting kind: A $C_A(\omega, 8) = P_A$ * These are the unit isoquant lines for A, B. By Shepard's lemma, we know: $\frac{\partial G(w, 8)}{\partial w} = lj, \frac{\partial G(w, 9)}{\partial 8} = kj.$ CA(W, 9) = PA and CB(W,9) = PB happens where?

Notice that this determines $W^*, 9^*$

$$A = L_{1}, K_{1}$$

$$Q = L_{2}, K_{2}$$

$$3 = L_{3}, K_{3}$$

$$C_{A} = P_{A}$$

$$C_{B} = P_{B}$$

$$W$$

(1)
$$\exists Y_A, Y_B > 0$$
:
 $Y_A \nabla C_A + Y_B \nabla C_B = (L_1, K_1) \int Eqlorn$

(2)
$$\exists Y_A > 0$$
, $Y_B = 0$:
$$Y_A \nabla C_A = (L_2, K_2) \quad \exists Eqbm$$

(3)
$$F$$
 Y_A , $Y_B > 0$: $Y_A \nabla_{C_A} + Y_B \nabla_{C_B} = (L_3, K_3)$.

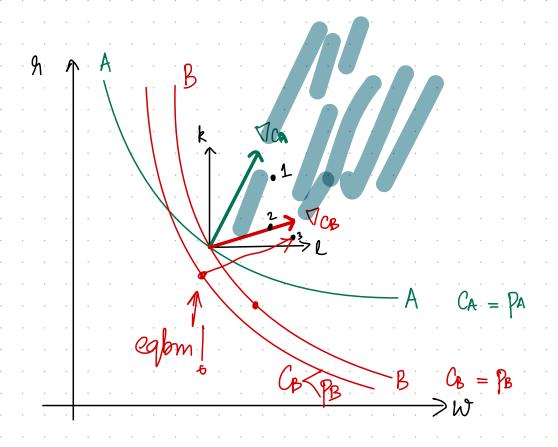
Clearly $Y_A^* = 0$.

But $Y_B^* > 0$ as $w^*, 9^*$ such that $c_B(w^*, 9^*) = p_B$

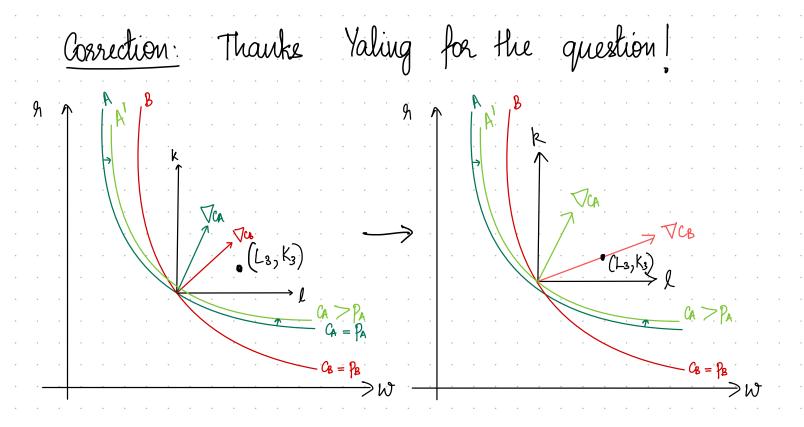
Cannot satisfy $Y_B^* \nabla_{B}^* = (L_3, K_3)$.

So, lower $w^*, 9^*$ until $c_B(w^*, 9^*) < p_B$
 $\Rightarrow B$ earns positive profit.

at Sueng Wha: This was incorrect



See correction in next slide



My error during section was not paying attention to complementary stackness. By complementary stackness, in any equilibrium: $Y_A[P_A - C_A(w, 9)] = 0$, $Y_B[P_B - C_B(w, 9)] = 0$

$$V_{A}[P_{A} - \mathcal{L}_{A}(w, 9)] = 0$$
, $V_{B}[P_{B} - \mathcal{L}_{B}(w, 9)] = 0$

ie Any industry with positive production must have 0 profite.

So, for endowments (L3, K3) which cannot be expressed as a conical combination of ∇c_A and ∇c_B , i.e. $\neq \gamma_A, \gamma_B > 0$ such that:

$$Y_A \nabla C_A + Y_B \nabla C_B = \begin{bmatrix} L_3 \\ K_3 \end{bmatrix}$$

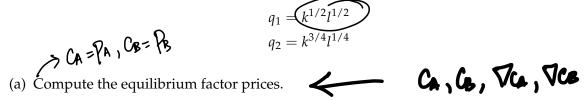
at the point: $c_{A}(w, n) = P_{A}$ J(x) $c_{B}(w, n) = P_{B}$ J(x)

Consequently, in any equilibrium, it must be that equation system (x) is violated. Since ∇c_B is closer to (L_3, K_3) , in eglow $y_B > 0$ and $y_A = 0$. Thus, by complementary slackness: $\mathcal{L}_{A}(w, \mathcal{R}) \geqslant p_{A}$ $\mathcal{L}_{\mathcal{B}}(w,\mathfrak{H}) = \mathfrak{g}$ At this point, 3 y > 0: $\mathcal{A}_{\mathcal{B}}$ Intuition: When K/L ratio is small, it must be that the capital intensive industry does not produce $\frac{k_{A}}{\ell_{A}} = \frac{\partial c_{A}/\partial g}{\partial c_{A}/\partial w} > \frac{\partial c_{B}/\partial g}{\partial c_{B}/\partial w} = \frac{k_{B}}{\ell_{B}}$ $\Rightarrow y_A = 0$ and $y_B > 0$ content of the Rybeszynski X) This is the

theorem.

2 Problems

Problem 1. Suppose in a small open economy, world output prices for good 1 and 2 are p and 1, respectively. The production functions are:



- (b) Compute $\frac{\partial w}{\partial p}$ when both goods are produced.
- (c) Suppose p = 1. If the endowment of capital and labor are both 100, do both firms operate?

 (d) Suppose p = 1. If the endowment of capital and labor are 100 and 400 respectively, do both firms operate?

Problem 2. A small open economy produces two goods, A and B, using two inputs, capital (k) and labor (l). The production function for the two goods are:

$$f_A(l_A, k_A) = \min\{\alpha_A l_A, \beta_A k_A\}$$

$$f_B(l_B, k_B) = \min\{\alpha_B l_B, \beta_B k_B\}$$

Let p_A and p_B be the world output prices of good A and B respectively. Also, let the country's stock of capital and labor be $(K, L) \gg 0$. Denote the prices of capital and labor by r and w respectively. Suppose $K/L \in (1/4, 1/2)$.

- (a) Let $p_A = \alpha_A = \alpha_B = 1$ and $\beta_A = 4$, $\beta_B = 2$. Suppose we are in the situation where both A and B are produced in positive quantities. Solve for the competitive equilibrium when both wage rate and rental rate are positive.
- (b) Suppose the economy specified above is in a diversified competitive equilibrium with w, r > 0. What can you say regarding the factor intensity of industry A compared to industry B? What is the effect of an increase in p_B on the equilibrium input prices?

(a)
$$C_A(\omega_1 x) = \omega + \frac{91}{4}$$
; $\nabla C_B = \begin{bmatrix} 1 \\ 14 \end{bmatrix}$
 $C_B(\omega_1 x) = \omega + \frac{91}{2}$; $\nabla C_B = \begin{bmatrix} 1 \\ 14 \end{bmatrix}$
 $C_A = P_A$; $C_B = P_B = 7$
 $\omega + \frac{9}{4} = 1$; $\omega + \frac{9}{2} = P_B$ $\longrightarrow \omega^* = 2 - P_B$; $\gamma = 4(P_B - 1)$.
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_B = P_B$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B = 7$
 $C_A = P_A$; $C_B = P_B$

1 Notice that the eghm is characterized in forms of runt cost function, so let's find it:

$$\mathcal{L}(9,\omega) = \underset{k,l}{\text{min}} \quad \omega l + 9k$$

$$8 \cdot t \cdot k^{\alpha} l^{1-\alpha} \ge 1, k, l \ge 0$$

$$\chi = wl + 9k + \lambda \left[1 - k^{\alpha} l^{1-\alpha}\right]$$

FOC(E):
$$\eta = \chi \propto k^{\alpha-1} \ell^{-\alpha} + Const : k^{\alpha} \ell^{-\alpha} = 1$$
.

FOC(C): $w = \chi(1-\alpha) k^{\alpha} \ell^{-\alpha} + Const : k^{\alpha} \ell^{-\alpha} = 1$.

$$\mathcal{L}\left(\mathcal{H},\mathcal{W}\right) = \left(\frac{\mathcal{H}}{\mathcal{A}}\right)^{\mathcal{A}}\left(\frac{\mathcal{W}}{1-\mathcal{A}}\right)^{1-\mathcal{A}} \qquad \left(\frac{\mathcal{C}_{A} = \mathcal{P}_{A}}{\mathcal{C}_{B} = \mathcal{P}_{B}}\right) \rightarrow \mathcal{R}^{x}, \mathcal{W}^{x}$$

So,
$$\mathcal{L}_{1}(\Re_{1}w) = 2\sqrt{\Re w}$$
 $\mathcal{L}_{2}(\Re_{1}w) = 4\sqrt{\Re 4}$ $\mathcal{L}_{3}^{3/4}$ $\mathcal{L}_{4}^{3/4}$ $\mathcal{L}_{4}^{3/4}$ $\mathcal{L}_{5}^{3/4}$ $\mathcal{L}_{5}^{3/4}$ $\mathcal{L}_{5}^{3/4}$ $\mathcal{L}_{7}^{3/4}$ $\mathcal{L}_{7}^{3/4}$ $\mathcal{L}_{7}^{3/4}$ $\mathcal{L}_{7}^{3/4}$ $\mathcal{L}_{7}^{3/4}$

Recall $(\omega, 9)$ are completely characterized by $P_1 = \mathcal{L}_1(\omega, 9)$ and $P_2 = \mathcal{L}_2(\omega, 9)$.

$$P = 2 \sqrt{W9}$$

$$1 = \frac{4}{3^{3/4}} + 91^{3/4} + W^{1/4}$$

$$9^* = (3/4)^{3/2} \frac{1}{p}$$

$$w^* = (4/27)^{1/2} p^3$$

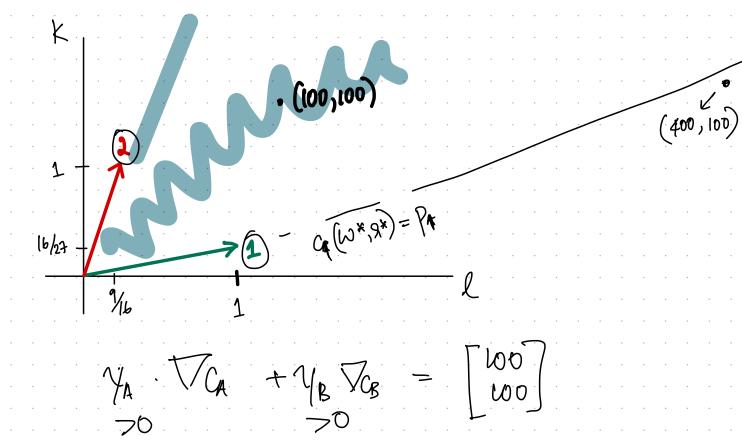
$$\Rightarrow \frac{\partial w^*}{\partial p} = \frac{1}{27} - \frac{4}{27} 3p^2$$

To answer this, I must compute
$$\nabla c_1(8^*, \omega^*)$$
, $\nabla c_2(9^*, \omega^*)$.

After careful algebra:

$$\nabla_{C_1} = \begin{bmatrix} \sqrt{27/4} \\ (\omega,9) \end{bmatrix}$$

$$4/\sqrt{27}$$



min wel + 9.K $\mathcal{L}(\omega, \mathcal{S}) =$ min $\{dl, \beta k\} \geq 1$ ⇔ dl ≥1 $L = W(+9k + \lambda_1(1-\alpha l) + \lambda_2(1-\beta k)$ $Foc(\ell)$: $w = \lambda_i x^i$ $(k): \mathcal{A} = \lambda_2 \beta$ Consts: (*= 1/2; k* = 1/8. $\mathcal{L}(\omega, s) = \omega \ell^* + s k^*$ = 1 W + 8 B

(b) Stoples - Samuelson: In a diversified eabon if Pat, the input that A is intensive in has its price The other I.

91 (Bis intensive in k)