ECON 6100	02/26/2021
Section	on 2
Lecturer: Larry Blume	TA: Abhi Ananth

^{*} These notes develop Fikri Pitsuwan's notes from 2017.

1 Review

The feasible set of a linear program in standard form is $C = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$. For $x \in \mathbb{R}^n$, define $supp(x) = \{j : x_j > 0\}$, the set of coordinates such that x has strictly positive component.

Definition 1. A feasible solution $x \in C$ is *basic* if the set $\{A^j : j \in supp(x)\}$ is linearly independent.

Note that since A is $m \times n$ and without loss of generality we can assume that A has full row rank, i.e., rank(A) = m, for $x \in C$ to be basic, x needs to pick out m linearly independent columns of A.

Theorem. $x \in C$ is basic if and only if it is a vertex.

Example 1. Consider

$$A = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
 and $b = \begin{bmatrix} 1 \end{bmatrix}$

For $x = \begin{bmatrix} 1/2 & 1/2 \end{bmatrix}^T$, $x \in C$ and $supp(x) = \{1,2\}$. Since $\{A^1, A^2\}$ is not linearly independent, x is not basic and thus not a vertex. The basic feasible solutions are $x = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $x = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$.

Theorem (FTLP). *If a linear program in standard form has an optimal solution, then it has a basic optimal solution.*

Given a linear program in canonical form

$$v_p(b) = \max c \cdot x$$

s. t. $Ax \le b$
 $x \ge 0$

The dual linear program is

$$v_D(c) = \min y \cdot b$$

s. t. $yA \ge c$
 $y \ge 0$

A very useful theorem from the study of duality is the complementary slackness theorem.

Theorem. If x^* and y^* are feasible for the primal and dual, then they are optimal if and only if $y^*(b Ax^*$) = 0 and $(y^*A - c)x^* = 0$

Example 2. Consider the linear program from section 1

$$\max 2x_1 + x_2$$

s. t. $x_1 + x_2 \le 1$
 $x_1 \ge 0, x_2 \ge 0$

The dual linear program is

Clearly, the solution to the dual is $y_1^* = 2$, so an optimal solution of the primal must satisfy $x_1^* + x_2^* = 1$. Now, we also have $(y_1^* - 2)x_1^* + (y_1^* - 1)x_2^* = 0$, which implies that $x_1^* = 1$ and $x_2^* = 0.$

$$y^{*}(b-Ax^{*}) = 0$$

$$y^{*}(b-Ax^{*}) = 0$$

$$= 0$$

$$x_{1}^{*} = 1 - x_{2}^{*}$$

$$y^{*}(11)x^{*} - 2x_{1}^{*} - x_{2}^{*}) = 0$$

$$2x_{1}^{*} + 2x_{2}^{*} - 2x_{1}^{*} - x_{2}^{*} = 0$$

$$x_{2}^{*} = 0$$

$$x_{1}^{*} = 0$$

Problems

Problem 1. Consider the (primal) linear program

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} Y_1 + Y_2 \\ Y_2 \end{bmatrix} \quad 2Y_1 - Y_2$$
(a) Draw the constraint set and s

$$\max x_1 + x_2$$
s. t. $x_1 + 2x_2 \le 6$

$$x_1 - x_2 \le 3$$

$$x_1 \ge 0, x_2 \ge 0$$

$$\chi_{1} + 2\chi_{2} + \chi_{3} = 6$$

 $\chi_{1} - \chi_{2} + \chi_{4} = 3$.
 $\chi_{1}, \chi_{2}, \chi_{3}, \chi_{4} > 0$

- (b) Write the problem in standard form.
- (c) State and solve the dual problem.
- (d) Verify that the values coincide and that the complementary slackness conditions hold.

$$\chi_{1} + 2\chi_{2} = 6$$

$$\chi_{1} - \chi_{2} = 3$$

$$(+)$$

$$3\chi_{2} = 3$$

$$\chi_{2} = 1$$

$$\chi_{1} = 4$$

max
$$c \cdot x$$

 $s \cdot t \cdot A x = b$
 $x > t$

$$C, A, b, x.$$

$$X = (x_1, x_2, x_3, x_4)$$

$$C = (1, 1, 0, 0)$$

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{bmatrix}$$

Co) Dual:

$$y_1 + y_2 > 1$$
 $y_1 + y_2 > 1$ $y_2 = 0$
 $y_1 + y_2 > 0$
 $y_1 + y_2 > 0$
 $y_2 = 1 - y_1$
 $y_2 = 1 - y_1$
 $y_2 = 1 - y_1$
 $y_1 - 1 + y_1 = 1$

$$24_{1} - 1 + 4_{1} = 1$$
.
 $4_{1} = 2/3$.

$$Value_{p}(V1) = 6y_{1} + 3y_{2} = 6$$

 $Value_{p}(V2) = 6(2) + 3(1) = 5$

$$\begin{pmatrix} 2/3 & 1/3 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 + 2 \\ 4 - 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

Problem 2. Consider the following linear program

- (a) Draw the constraint set.
- (b) Solve the problem and plot $v_p(b)$.
- (c) State and solve the dual problem. How does the solution of the dual problem depend on *b*?
- (d) Let b = 6, verify the complementary slackness conditions.

$$(x_1^* = b, x_2^* = 0)$$

$$V_P = b$$

Case (i1)
$$\chi_1 + \chi_2 = 4$$

 $\chi_1 + 3\chi_2 = b$
 $\chi_2 + 3\chi_2 = b - 4 \implies \chi_2 = b - 2$

$$(0,\frac{1}{3})$$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$
 $(0,\frac{1}{2})$

$$\bigvee_{i}(0,0)=0$$

$$V_{p}(4,0) = 4$$

$$V_{p}(0,\frac{b}{3}) = \frac{2}{3}b \xrightarrow{4 \le b \le 12} \frac{8}{3}, 8$$

$$V_{p}(b-\frac{b}{2},\frac{b}{2}-2) = 6-\frac{b}{2}+b-4$$

$$= 2+\frac{b}{2} \Rightarrow 4,78$$

When
$$4 \le b \le 12$$
.

 $\Rightarrow V_{p}(b-\frac{b}{2}, \frac{b}{2}-2)$ is highest.

When $b > 12$.

 $\Rightarrow V_{p}(0,4) = 8$.

(c) Dual: min $4 \le y_{1} + b \le y_{2}$.

 $8 + y_{1} + y_{2} \ge 1$.

 $9 + y_{1} + 3 \le y_{2} \ge 2$.

 $9 + y_{1} + 3 \le y_{2} \ge 2$.

 $9 + y_{1} + 3 \le y_{2} \ge 2$.

 $9 + y_{2} \ge 0$.

 $9 + y_{3} \ge 0$.

 $9 + y_{1} + 3 \le 0$.

 $9 + y_{2} \ge 0$.

 $9 + y_{3} \ge 0$.

 $9 + y_{2} \ge 0$.

 $9 + y_{3} \ge 0$.

1 holds => 2 doesn't.
2 holds => 1 doesn't.

Problem 3. Prove Gordon's Lemma: Let $A \in \mathbb{R}^{n \times m}$, then exactly one of the two alternatives is true:

- 1. $\exists x \in \mathbb{R}^n, x \neq 0, x \geq 0$ such that Ax = 0
- 2. $\exists y \in \mathbb{R}^m$ such that yA >> 0

Farka's lemma: Exactly one of the following holds: i - Ax = b for some x > 0

ii - yA >0, yb <0 for some y.

1 holds iff 2 doesn't

Contrad: 122 hold.

 $\exists x^* : Ax^* = 0 \cdot , x^* > 0 \Rightarrow \forall y ; y Ax^* = 0$

 $\exists yx: yxA \gg 0. \Rightarrow xx>0, yxAxx0$

Contradiction)

yA>>0 ←> 78>0: yA>8e M C e = (1, ---, 1). e = (1, ---, 1). has no solution iff (Y, -8) $\begin{bmatrix} A \\ e \end{bmatrix} = 0$ °, (0, ---, 0, 1) $\begin{bmatrix} Y \\ -1 \end{bmatrix}$ (0, ---, 0, 1)=> By Farka's Cemma $\begin{bmatrix}
A & A \\
A & A
\end{bmatrix}$ $A & A \\
A & A$ $A & A \\
A & A \\
A &$ $A \times = 0$ 4 A - 8 e () 0 MA>>0 (=> $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ more negative - 2 (2) 1

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$

Ax = 0only possible at x = 0